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The College of Engineering at The University of Alabama has an undergraduate enroll- 
ment of more than 2,300 students and a graduate enrollment exceeding 180. There are 
approximately 100 faculty members, a significant number of whom conduct research in 
addition to teaching. 

Research is an integral part of the educational program, and research interests of the 
faculty parallel academic specialities. A wide variety of projects are included in the overall 
research effort of the College, and these projects form a solid base for the graduate 
program which offers fourteen different master’s and five different doctor of philosophy 
degrees. 

Other organizations on the University campus that contribute to particular research 
needs of the College of Engineering are the Charles L. Seebeck Computer Center, Geologi- 
cal Survey of Alabama, Marine Environmental Sciences Consortium, Mineral Resources 
Institute-State Mine Experiment Station, Mineral Resources Research Institute, Natural 
Resources Center, School of Mines and Energy Development, Tuscaloosa Metallurgy 
Research Center of the U.S. Bureau of Mines, and the Research Grants Committee. 

This University community provides opportunities for interdisciplinary work in pursuit of 
the basic goals of teaching, research, and public service. 

BUREAU OF ENGINEERING RESEARCH 

The Bureau of Engineering Research (BER) is an integral part of the College of Engineer- 
ing of The University of Alabama. The primary functions of the BER include: 1) identifying 
sources of funds and other outside support bases to encourage and promote the research 
and educational activities within the College of Engineering; 2) organizing and promoting 
the research interests and accomplishments of the engineering faculty and students; 
3) assisting in the preparation, coordination, and execution of proposals, including 
research, equipment, and instructional proposals; 4) providing engineering faculty, 
students, and staff with services such as graphics and audiovisual support and typing and 
editing of proposals and scholarly works; 5) promoting faculty and staff development 
through travel and seed project support, incentive stipends, and publicity related to 
engineering faculty, students, and programs; 6) developing innovative methods by which 
the College of Engineering can increase its effectiveness in providing high quality educa- 
tional opportunities for those with whom i t  has contact; and 7) providing a source of timely 
and accurate data that reflect the variety and depth of contributions made by the faculty, 
students, and staff of the College of Engineering to the overall success of the University in 
meeting its mission. 

Through these activities, the BER serves as a unit dedicated to assisting the College of 
Engineering faculty by providing significant and quality service activities. 
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ABSTRACT 

I 

A direct-execution parallel architecture for the Advanced 

Continuous Simulation Language (ACSL) is presented which overcomes the 

traditional disadvantages encountered when simulations are executed on a 

digital computer. 

mapping of simulations onto a digital computer to be done in the same 

inherently parallel manner as they are currently mapped onto an analog 

computer. The direct-execution format maximizes the efficiency of the 

executed code since the need for a high level language compiler is 

eliminated. Resolution is greatly increased over that which is 

available with an analog computer without the sacrifice in execution 

speed normally expected with digital computer simulations. 

The incorporation of parallel processing allows the 

Although this report covers all aspects of the new architecture, 

key emphasis is placed on the processing element configuration and the 

microprogramming of the ACSL constructs. 

ACSL constructs are computed using a model of a processing element based 

on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution 

speed provided by parallel processing is exemplified by comparing the 

derived execution times of two ACSL programs with the execution times 

for the same programs executed on a similar sequential architecture. 

The execution times for all 

vi i 



CHAPTER 1 

INTRODUCTION 

Analog computers have traditionally been chosen over digital com- 

puters for the simulation of physical systems because analog computer 

architectures are tailor-made for solving systems of simultaneous 

differential equations in an inherently parallel fashion. The main 

drawback of an analog computer is the low resolution of its outputs 

which will degrade the accuracy of the simulation. The traditional Von 

Neumann digital computer is capable of higher resolution, but it 

requires more computational time due to the sequential nature of its 

architecture. 

that overcomes the slow execution problem of a Von Neumann machine while 

providing greater resolution than normally possible with an analog 

computer. 

This report will present a digital computer architecture 

This paper will examine a specific simulation language, ACSL, and 

use two techniques to improve its execution speed in order to simulate 

systems in real-time. These two techniques are the use of a direct- 

execution architecture to bypass the compiler, thereby increasing system 

efficiency and speed, and the incorporation of parallel processing in 

the system architecture to further maximize execution speed. 

All aspects of the architecture will be examined, including the 

microprogramming of the ACSL constructs, the processing element configu- 

ration, the interconnection network, the 1/0 processor, and the 

functions performed by the allocater. From this analysis execution 

1 
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times of two example ACSL programs will be derived in terms of the 

minimum real-time calculation interval. 

With the addition of appropriate sensors and actuators, this 

architecture could be used to simulate physical systems while they 

interact with other physical systems in real-time. 

modeling equations are accurate, the results of the simulation will be 

precisely the same as if the actual component had been used. Further- 

more, if the system being simulated is a type of computer controlled 

system, then the same architecture used to model it could also be used 

to implement the component being simulated. 

Assuming the 

- The Advanced Continuous Simulation Language, ACSL 

The Advanced Continuous Simulation Language (ACSL) is used to model 

dynamic systems by time dependent, non-linear differential equations 

and/or transfer functions (Mitchell and Gauthier, Associates 1986). 

Simulation of physical systems is a standard and useful analysis tool 

used to test the design of a system prior to the actual construction of 

the proposed system. For example, a program written in ACSL to 

determine whether or not a pilot ejecting from his aircraft will strike 

the plane's vertical stablilizer is a much better approach than actually 

ejecting a test pilot to see if he clears the tail fin of the aircraft. 

- A Direct-Execution Architecture 
There are several ways high-level languages can be implemented. 

Some architectures concentrate on hardware, some on software, and still 

others on implementation technology. In general, computer architectures 

to implement high-level languages fall into one of the classifications 

shown in the tree diagram in figure 1 (Milutinovic 1988). Indirect- 
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4 

execution architectures use software or hardware to translate or compile 

the high-level language program in to a form suitable for machine 

execution. 

by incorporating hardware or software functions to execute high-level 

language programs directly. 

Direct-execution architectures bypass the translation step 

When a compiler is used to convert a high-level language to machine 

code, inefficiencies are introduced into the newly created machine code. 

These inefficiencies cause the system to operate below the maximum 

possible execution speed and cause the system to utilize more memory 

than would be required if the high-level language constructs were pro- 

grammed in a more efficient manner. 

help solve these problems since each processing element is micro- 

programmed to execute HLL constructs directly, thereby eliminating the 

need for a compiler and the inefficiencies associated with it. 

A direct-execution architecture can 

Parallel Processing 

Parallel processing will be incorporated in the new architecture to 

There is always a need in industry for faster increase execution speed. 

execution speeds when modeling dynamic systems. 

used today simply cannot perform complex high-speed simulations in a 

real-time environment. With the introduction of parallel processing 

into a simulation language architecture, the simulation speeds for 

complex tasks will increase greatly over currently available simulation 

speeds. 

California at Berkeley where the Department of Electrical Engineering 

and Computer Science is working on the Msplice parallel simulator for 

analog circuits. For some circuits a 32 processor version of Msplice 

runs as much as 25 times faster than a uniprocessor version (Howe 1987). 

The sequential machines 

This has already been demonstrated at The University of 
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Parallel processing principles apply to any type device technology, 

so if it is stated that a parallel processing architecture is not needed 

because a higher speed technology (such as optical computers) will soon 

be available, please note that parallel processing can increase the 

speed of these devices in the same manner it is used to increase 

the performance of silicon devices. 

-- How to Improve the Current ACSL Computer Design 
To compile an ACSL program today, one first converts the ACSL 

source code to FORTRAN with a FORTRAN translator. The FORTRAN code is 

then compiled to create executable machine code. Each step taken to 

compile an ACSL program introduces inefficiencies into the resulting 

machine code. This process is illustrated in figure 2 .  Another problem 

with the current method is the fact that the vast majority of variables 

used in FORTRAN reside in main memory, thus making FORTRAN a memory 

intensive language. 

cache, execution would proceed at a higher rate if the variables were 

contained in internal CPU registers rather than in memory locations. 

Even if the memory variables are residing in a data 

The direct-execution process rids an architecture of the problems 

stated above. The need for a FORTRAN translator and compiler is elim- 

inated since the ACSL constructs are microprogrammed at each processing 

element (PE). This approach will result in more efficient code than 

could be achieved with a compiler. The memory access problem will be 

reduced by selecting a microprocessor with a large internal register 

file permitting program variables to reside in internal CPU registers. 
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CHAPTER 2 

PARALLEL PROCESSING DESIGN CONSIDERATIONS 

When designing a parallel processing architecture, there are 

several decisions to be made that are not considered when designing a 

typical sequential computing system. These decisions include the choice 

between a fine or course grained system, the method employed to organize 

memory, and what type interconnection network to use. These choices can 

either make an architecture fast and efficient, or they can bog down an 

architecture with inefficiencies to the point that a single high-speed 

processor can out-perform the parallel processing system. 

Fine-grained Course-grained Architecture 

The granularity of an architecture describes the complexity of the 

functions that each PE performs. 

perform simple functions such as an addition or multiplication. 

Conversely, a course-grained system's PE would be capable of more 

complex tasks, such as the evaluation of an entire equation with multi- 

plications, additions, subtractions, divisions, etc. Granularity also 

expresses the ratio between computation and communication in a parallel 

program (Howe 1987). 

as having more communication overhead than course-grained systems. 

A fine-grained system's PE would 

Fine-grained systems are typically characterized 

The system under consideration will be implementing high-level 

language constructs, some of which are fairly complex; therefore, a 

course grained architecture will be employed in order to keep a moder- 

7 
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ately complex construct microprogram executable within a single PE. 

Doing so will minimize communication requirements between PES and 

decrease possible communication bottlenecks. 

Shared Memory 01: Private Memory 

In a shared memory system, multiple processors are connected to 

multiple memory banks through one or more buses. 

system is contained in every processors memory map making all memory 

equally accessible by every processor. 

processor simply initiates a memory read or write cycle to the desired 

memory location. 

the requesting processor is allowed to access memory. This method 

provides the highest memory bandwidth but creates bottlenecks when 

several processors need access to the same memory bank at once. 

All memory in the 

To access a memory location, the 

If no contention is present from the other processors, 

In a private memory system, variables are passed to and from 

processors by way of a message passing scheme. 

another processor, the requesting processor sends a message to the 

processor holding the desired variable, and that processor sends a 

message back containing the variable. In general, private memory sys- 

tems are usually efficient when the interactions between tasks are 

minimal, but shared memory systems can tolerate a higher degree of 

interaction between tasks without significant deterioration in perform- 

ance (Howe 1987). With this in mind, if an architecture has a high 

degree of communication between tasks, a shared memory approach would be 

more efficient; but if the tasks had a low degree of inter-communi- 

cation, a private memory approach would be better. 

To read a variable from 

If a construct microprogram is considered to be a task in this ACSL 

architecture, there is then only a moderate amount of communication 
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between tasks. This is primarily due to the fact that very few of the 

ACSL constructs contain significant amounts of parallelism; therefore, 

it appears that a private memory architecture would be the most 

efficient. 

Interconnection Network 

The two types of interconnection networks or topologies to be 

considered are the non-blocking crossbar switch and the fiber optic 

star. Crossbar switches offer the highest communication bandwidth and 

the most complex and costly design. 

communication bit rates than crossbar switches but only one PE may use 

the star network at a time. These interconnection networks are illu- 

strated in figure 3 .  

Fiber optic stars offer higher 

If a system has a high degree of intercommunication between PES, 

then a crossbar switch will offer the highest efficiency; on the other 

hand, if communication between PES is low a fiber optic star will offer 

the best solution. As stated earlier, there is relatively little 

communication between tasks and what communication is present tends to 

be broadcast-type transfers to update state variables in the system; 

therefore, a fiber optic star would probably offer a more nearly optimal 

solution than the crossbar switch when all variables such as transmis- 

sion format, cost, complexity, and transfer rates are considered. 

Clustering is a technique in which PES are grouped together with a 

dedicated interconnection network, and these groups or clusters of PES 

are connected by a dedicated interconnection network. By creating 

levels in the interconnection network, clustering allows PES in a 

cluster to operate on shared data with low communication overhead and 

provides hardware facilities for multiple groups of PES to execute a 
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A FIBER OPTIC STAR 

4 X 4 CROSSBAR SWITCH 

F i g u r e  3.  P o s s i b l e  I n t e r c o n n e c t i o n  N e t w o r k s  



11 

tightly coupled process within their cluster without affecting the 

communications outside their cluster (Briggs and Hwang 1984). 

shows an interconnection network that uses fiber optic stars within a 

cluster and a fiber optic star connecting the clusters. 

Figure 4 
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CHAPTER 3 

REAL-TIME INSTRUCTION EXECUTION WITH ACSL 

In order to simulate complex systems in real-time, parallel 

processing will be incorporated into the architecture to boost execution 

rates to maximum levels. Parallelism will be implemented on two levels: 

the construct level and the program level. After examining the data 

flow graphs in appendix A, it does not take long to realize that very 

few of the ACSL constructs contain parallelism. 

most important constructs in ACSL can be implemented with a parallel 

algorithm; that construct is the INTEG or integration instruction. 

Fortunately, one of the 

Parallelism on the program level is much more accommodating than 

parallelism on the construct level. Considering the fact that simula- 

tions executed on an analog computer are programmed in an inherently 

parallel manner, then it becomes clear that simulation programs written 

in ACSL can be mapped onto a parallel architecture in the same manner 

that simulations are mapped onto an analog computer architecture. 

A direct-execution architecture offers several advantages over the 

traditional compiler approach to high-level language implementation with 

the largest advantage being in the form of more efficient code which 

results in faster program execution. In a direct-execution archi- 

tecture, the compiler is eliminated altogether, and in its place an 

allocater is used to allocate segments of ACSL programs to the 

various PES in the system. Resident at each PE are the hand-written 

assembly language routines to execute all ACSL constructs which will 

13 
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f 

result in the most efficient programming possible. Although it is 

beyond the scope of this paper to design the allocater, an attempt will 

be made to specify its requirements and describe its basic operation. 

Parallelism on the Construct Level 

ACSL constructs have been classified into one of three different 

categories. 

parallelism, constructs approximated with a finite term series (such as 

trigonometric functions), and constructs with inherent parallelism. 

Table 1 shows all constructs in their appropriate category. Their data 

flow graphs and microcoded routines can be found respectively in 

appendix A and appendix B. 

These categories are constructs with no inherent 

Constructs in category I offer no parallelism and are executable on 

one PE; in fact, several of these construct routines may be allocated to 

one PE without overfilling that PE's program memory. Constructs in 

category I range from simple boundary checks to simple calculations. 

Constructs in category I1 again offer no parallelism in a course- 

grained system but can be computed very efficiently by the use of a 

floating point processor that is optimized for factored polynomial 

evaluation. This point is discussed further in chapter 4.  

Constructs in category I11 have useful amounts of inherent 

parallelism which are exploitable in a course-grained system. 

important construct in this category is the integrate instruction. In 

order to take advantage of parallelism, the integrate construct will use 

a second order parallel predictor-corrector algorithm. 

is simply a restructuring of the traditional predictor-corrector method 

to allow predicting of the n+l  value while at the same time correcting 

The most 

This algorithm 
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TABLE 1 

CATEGORIZED ACSL CONSTRUCTS 

CATEGORY I 

ACSL INSTRUCTIONS WITH NO PARALLELISM PRESENT IN A COURSE-GRAINED 
SYSTEM. 

ABS - ABSOLUTE VALUE. 
AMOD - REMAINDER OF MODULUS. 
BCKLSH - BACKLASH OR HYSTERICES. 
BOUND - LIMIT A FUNCTION. 
DBLINT 
DEAD - CREATE DEADSPACE. 
DELAY - DELAY WITH RESPECT TO TIME. 
DERIVT - 1ST ORDER DERIVATIVE. 
DIM - POSITIVE DIFFERENCE. 
FCNSW - FUNCTIONAL SWITCH. 
GAUSS - CREATE NORMALLY DISTRIBUTED RANDOM VARIABLE. 
HARM - CREATE A SINUSOIDAL FUNCTION. 
IABS - ABSOUTE VAi'u'E OF AN INTEGER. 
IDIM - POSITIVE DIFFERENCE OF INTEGERS. 
INT - INTEGERIZE F.P. VALUE. 
ISIGN - APPEND A SIGN. 
LIMINT - LIMIT INTEGRATION. 
LSW,RSW - LOGICAL AND REAL SWITCH FUNCTIONS. 
MOD - REMAINDER OF AN INTEGER DIVISION. 
PTR - POLAR TO RECTANGULAR CONVERSION. 
PULSE - GENERATE A PULSE TRAIN. 
QNTZR - QUANTIZE A VARIABLE. 
RAMP - LINEAR RAMP FUNCTION GENERATOR. 
RTP - RECTANGULAR TO POLAR CONVERSION. 
SIGN - APPEND A SIGN. 
STEP - GENERATE A STEP FUNCTION. 
UNIF - UNIFORM RANDOM NUMBER SEQUENCE. 
ZHOLD - ZERO ORDER HOLD. 

- LIMIT DISPLACEMENT TERM OF FUNCTION. 

CATEGORY I1 

ACSL INSTRUCTIONS APPROXIMATED WITH A FINITE TERM SERIES. 

ACOS - ARC COSINE. 
ALOG - NATURAL LOGARITHM. 
ASIN - ARC SINE. 
ATAN - ARC TANGENT. 
COS - COSINE. 
EXP - NATURAL EXPONENT. 
EXPF - SWITCHABLE EXPONENTIAL 
SIN - SINE. 
SQRT - SQUARE ROOT. 
TAN - TANGENT. 
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TABLE 1--Continued 

CATEGORY I11 

ACSL INSTRUCTIONS WITH PARALLELISM: 

AMAXO, AMAXl, MAXO, MAX1 - INTEGER AND FLOATING POINT 
MAXIMUM VALUE ROUTINES. 

AMINO, AMINl, MINO, MINl - INTEGER AND FLOATING POINT 
MINIMUM VALUE ROUTINES. 

INTEG - INTEGRATION. 

for the n value (Liniger, Werner, and Miranker 1966). 

method, a speed increase factor close to two can be realized. 

Using this 

In addition to a parallel predictor-corrector method, a fourth 

order Runge-Kutta integration method will also be programmed (Ralston 

and Wilf 1965). Although basically a sequential process, the coef- 

ficients K1, K2, K3, and K4 of the Runge-Kutta algorithm can be computed 

for sets of simultaneous equations concurrently, thereby making the 

execution time for a system of N equations on a parallel processing 

computer approximately equal to the execution time for a system with a 

single equation on a sequential machine. 

Parallelism on the ProRram Level 
As stated at the beginning of this chapter, ACSL programs can be 

mapped directly onto a parallel architecture since simulations are 

typically executed on an analog computer, and analog computers tend to 

incorporate a large amount of parallelism. This is best demonstrated 

with an example using the Armstrong Cork Benchmark (Hannaver 1986). 

An ACSL program called the Armstrong Cork Benchmark is shown in 

table 2 .  A restructured data flow graph of this program is shown in 
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TABLE 2 

ARMSTRONG CORK BENCHMARK 

INITIAL 

CONSTANT TEND = 50.OE-6 

CONSTANT K1 = 1.OE-14, K2 = 1.OE6, K3 = 1.OE3, K4 = 1.OE6 
CONSTANT K5 = 1.OE-2, K6 = 1.OE-5, K7 = 1.OE5, K8 = 1.OE6 
CONSTANT K9 = 1.OE-3 

CONSTANT X10 = 24., X20 = O., X30 = O., X40 = 0 .  
CONSTANT X50 = O., X60 = 0. 

MINTERVAL MINT = 1.OE-7 
MAXTERVAL MAXT = 1.0 

END 

DYNAMIC 

DERIVATIVE 
XlDOT = -Kl*Xl - K3*Xl*X4 - K7*Xl"X3 
X2DOT = -K2*X2 + Kl*X1 + K3*Xl*X4 + K7*Xl%3 + K9*X4 
X3DOT = K6*X5*X5 - K7*Xl*X3 - K8*X3*X4 
X4DOT = K2*X2 - K3*Xl*X4 - K4*X4*X4 + K6*X5*X5 - 

X5DOT = K3*Xl"X4 - K5*X5*X5 - K6*X5f:X5 
K8*X3f:X4 - K9*X4 

X6DOT = K4*X4:kX4 + K5*X5*X5 + K8*X3*X4 
xi = INTEG(XIDOT, x-io) 
X2 = INTEG(X2DOT, X20) 
X3 = INTEG(X3DOT, X30) 
X4 = INTEG(X4DOT, X40) 
X5 = INTEG(XSDOT, X50) 
X6 = INTEG(X6DOT, X60) 

EPS = (X1 - XlO) + X6 + (X2 + X4 + X5) 

TERMT( T . GT . TEND) 
END 

END 

TERMINAL 
END 

figure 5. The graph in figure 5 can be thought of as a set of 6 inte- 

grators operating in parallel. One possible allocation algorithm might 

be to allocate the algebraic equation XlDOT and the integrator X1 
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to a cluster of PES, the equation X2DOT and the integrator X2 to another 

cluster of PES, and so on until all s ix  equations and integrators are 

allocated. These six clusters of processors would then compute their 

equations, perform their integrations, and update their results at the 

appropriate communication interval all in parallel. 

would be required to accumulate the program output EPS. 

configuration and the use of parallel integration methods, an execution 

speed increase of up to twelve could be realized over the usual 

uniprocessor approach. 

An additional PE 

With this 

Allocater Requirements 

For real-time operation, the allocater has to allocate ACSL con- 

structs in the most efficient manner, reduce and factor equations for 

maximum execution speed, and optimally schedule the interprocessor com- 

munications. 

Resource and Construct Allocation 

System resources must be allocated in an optimum manner to obtain 

maximum system throughput. Instead of using main memory locations to 

hold variables, the allocater will assign internal CPU and FPU registers 

to frequently used variables. Doing so will allow maximum execution 

speeds since most variables will be immediately available to CPU. 

To maximize execution speed, ACSL constructs must be allocated on 

the cluster level and the PE level in the most efficient manner. In 

general, independent functions should be allocated in a way to allow 

them to be executed in parallel; in addition, tasks with a moderate to 

high degree of processor intercommunications should be allocated to a 

cluster of PES, thus allowing the required communications between 
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processors to proceed without hindering other processor's intercommuni- 

cations. 

associated equation to a cluster of PES as described in the section 

Parallelism on the Program Level. 
be used on a parallel integration algorithm and one or more of the PES 

could be used to evaluate the derivative function. The optimum number 

of PES in a cluster would depend on the complexity of the program. 

An example of this would be to allocate an integration and its 

Two or more PES in the cluster could 

Expression Reduction and Factoring 

The allocater will be responsible for reducing algebraic expres- 

sions down to the form that will allow maximum execution speed. This 

process may include factoring a polynomial to allow rapid multiply/ac- 

cumulate sequences. 

approximations are programmed in this manner. 

examine the following equation for the exponential function (Beyer 

1984) : 

The constructs involving finite term series 

To illustrate factoring, 

It may be factored to allow computation without generating higher powers 

of X in the following manner: 

EXP[X] = l+X[l+X[AO+X~Al+X[A2+X[A3+X[A4+X[A5]~~]]~~. 

This form allows rapid computation of an exponential with floating point 

units that incorporate a multiply/accumulate ALU. 

Interprocessor Communication Scheduling 

The allocater will be responsible for determining what time periods 

the PES will have data ready to transmit. Using this information, the 
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allocater will schedule the order in which intracluster PES will 

transmit to other intracluster PES and the order in which clusters will 

transmit data to other clusters. The allocater is able to schedule data 

transfers, because the execution times of all the construct routines are 

known. Once the order of all data transfers is known, the allocater 

loads information into every 1/0 processor telling it which data words 

to use, what order they arrive, and where the data words go in the PES 

memory. 

processor that the fourth word seen on the star after the start of a 

calculation interval is state variable X1 which it needs for its calcu- 

lations. 

required) and ignore all others. 

lation period. 

For example, the allocater might tell a particular 1/0 

The 1/0 processor would read X1 (and any other variables it 

This process would repeat every calcu- 

The reason this complex scheduling scheme was devised is to mini- 

mize the communication overhead associated with transferring a word of 

data between PES. If data packets were used that contained addressing 

or destination information, it would significantly increase the communi- 

cation delays in the system. Using the scheduling technique allows the 

use of data packets that contain little or no overhead characters, only 

32 bits of data. 

Real-Time Data Transfer 

In order for a PE to transmit a word of data to another PE, the 

only action taken by the transmitting PE is to write the data word to 

the 1/0 processor. 

received from the predetermined order assignments. 

then formats the data into a packet, waits for that data word's 

scheduled turn on the network, and then places it on the fiber optic 

The 1/0 processor knows which data word it just 

The 1/0 processor 
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star network. If the data is scheduled to be received by an intra- 

cluster PE, that PE's 1/0 processor reads the data word and deposits it 

into the proper location in that PE's memory. 

cluster, it will be read by the cluster 1/0 processor and placed on the 

intercluster fiber optic star for reception by the proper cluster at the 

If the transfer is inter- 

scheduled time. 

When a data word is received by the 1/0 processor for use by the 

PE, the 1/0 processor writes the data word to a predetermined memory 

location and signals the PE by activating an interrupt line. The inter- 

rupt causes the PE to retrieve the data word atomically with the LOADSET 

instruction. The LOADSET instruction reads a word of memory and writes 

back all ones to the same location after the read. With this technique, 

the 1/0 processor can determine if the PE has read the data word before 

updating the memory location with a new value. When all the operands 

have been received and loaded by the interrupt routine, the interrupt 

routine signals the executing task by setting a condition code to the 

boolean true value. The executing task simply checks this condition 

code, and when true, continues with the program execution. 

Program Execution with Direct-Execution Architectures 

Direct-execution architectures offer several advantages over other 

architectures that use translators and compilers in that the direct- 

execution architecture has no compilation overhead, offers single-copy 

program storage, and has a high degree of interactiveness (Milutinovic 

1988). 

flexibility. Most direct-executions languages are implemented entirely 

in hardware thus representing a nonoptimal hardware/software tradeoff, 

A disadvantage of a direct-execution architecture is its lack of 

except in specific applications. For example, it would not be advan- 
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tageous to use a direct-execution architecture developed for Ada in a 

system used to execute FORTRAN code. Although the architecture 

discussed in this thesis was designed to execute ACSL, it is flexible 

enough to implement other host languages by simply re-writing the micro- 

coded routines to execute whatever high-level language desired. 



CHAPTER 4 

PROCESSING ELEMENT CONFIGURATION 

A processing element (PE) will be composed of a CPU, a FPU, high- 

speed instruction memory, main memory, and an 1/0 processor. 

will be a state-of-the-art microprocessor capable of sustained high MIPS 

rates. 

merically intensive tasks associated with ACSL. The high-speed instruc- 

tion memory will hold the microcoded ACSL construct routines the CPU 

will execute, allowing the CPU to execute at full speed without wait 

states. 

hold the microcoded routines for all ACSL constructs. 

is responsible for monitoring the interconnection bus and relieving the 

CPU from the overhead associated with interprocessor communications. A 

block diagram of a PE is shown in figure 6. 

The CPU 

The FPU (floating point unit) will be required due to the nu- 

Main memory will be made up of dynamic RAM and EPROM which will 

The 1/0 processor 

Execution Flow & Processing Element 

Before an intelligent choice can be made as to what type processing 

element to use, there must be an understanding as to the execution 

environment the PE will be operating in. Figure 7 shows a typical 

direct-execution architecture known as the University of Maryland 

approach. Code to be executed is stored in the program memory, and data 

variables are stored in the data memory. At execution, the lexical 

processor scans the program memory to determine what high-level language 

tokens it is to execute. The lexical processor then places the tokens 

24 
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into a token register for execution by the control processor or data 

processor. 

manipulations such as multiplication and shifting, and the control 

processor executes tokens that change program flow such as GOT0 and IF 

THEN instructions (Milutinovic 1988). 

The data processor will execute tokens corresponding to data 

The architecture designed to implement ACSL will be similar to the 

University of Maryland approach, but will deviate from it in several 

ways in order to simplify the design and increase program execution. 

The ACSL direct-execution architecture will use only one processor to 

execute program control instructions as well as data manipulation 

instructions, although a floating point processor will be included to 

assist in the calculation of floating point operands. To obtain the 

maximum execution speeds, all lexical analysis will be performed by the 

allocater prior to the start of execution. 

will be resident in the CPU when execution starts. This is possible due 

to the fact that ACSL programs execute the same code repetitively as 

shown by the bold line (the primary loop) in figure 8. 

DERIVATIVE section is simply executed over and over, incrementing the 

time variable each pass until the terminate conditions are met. 

Performing lexical analysis before execution starts eliminates the need 

for a lexical processor in hardware, thus simplifying the design and 

increasing throughput by eliminating any delays associated with having 

the CPU wait for tokens. 

The tokens to be executed 

The code in the 

When a PE receives (in the preprocessing stage) an ACSL construct 

it is to execute or an operand it will use in execution, that PE trans- 

fers the microcoded routine from main memory into high-speed static RAM 

or deposits the operand into an internal CPU register. When program 
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execution begins, the PE will be executing instructions entirely from 

high-speed RAM with all operands contained in internal CPU registers, 

thus allowing the fastest possible execution by eliminating access to 

slow main memory. 

CPU - 
Microprocessors examined will be limited to the new families of 32 

bit machines in order to obtain the most performance per processing 

element (PE). 

basic types, complex instruction set (CISC) or reduced instruction set 

(RISC) microprocessors. 

processors since they are characterized as having a large register set, 

being able to execute one instruction per clock cycle and having a high 

MIPS rate. 

that allows it to execute one instruction per clock cycle; on the other 

hand, CISC processors usually pay a performance penalty for supplying 

more complex instructions in the form of multiple clock cycles per 

instruction. In most cases it simply takes longer to decode and execute 

complex variable length instructions, and this inefficiency causes even 

simple operations in a CISC processor to take multiple clock cycles to 

execute--operations that a RISC processor would execute in one clock 

cycle (Toy, Wing, and Zee 1986). 

Of the available 32 bit microprocessors there are two 

Our search will concentrate on R I S C  type 

RISC processors usually use a hard-wired instruction decoder 

Microprocessor Survey 

A l l  the microprocessors listed in table 3 have one feature in 

common, except the 86C010 ARM, and that is they all use a dual bus 

Harvard architecture. Harvard architectures significantly improve 

performance by allowing data and instruction accesses simultaneously. 
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TABLE 3 

COMPARING 32 BIT RISC MICROPROCESSORS 

CLOCK CPU 
NAME MANUF . SPEED REGISTERS MIPS 

AMI) 29000 

The AMD 29000 has built-in support for both a data and an instruc- 

tion cache with the cache memory located externally from the processor. 

It is said to be targeted toward general purpose CPU applications such 

as workstations and personal computers. Operating at 25 MHz, Advanced 

Micro Devices claims the 29000 offers about 12 times the performance of 

a VAX-11/780 for integer and systems code. The generous 192 register 

file acts as a data cache for a moderate number of  operands while giving 

the ability to read-modify-write data in a single clock cycle. The AMD 

29000 has a 32 bit fixed width instruction set. Large, fixed length 

instructions encode programs less efficiently (in terms of memory used) 

than small, variable-length instructions, but they can be processed much 

faster. The AMD29027 FPU is available to increase floating point compu- 

tations greatly over software routines (Johnson 1987b). 

Inmos Transputer 

The Inmos Transputer w a s  designed with parallel processing in mind. 
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It is a high-integration machine which has four high-speed (20M bps) 

serial channels for communication with other processors, two timers, an 

8 channel DMA controller, and a dynamic ram controller on chip. Systems 

have been built using over 100 Transputers that showed a linear increase 

in computing speed for each Transputer added. 

Transputer architecture for this application is the fact that the 1/0 

processor is located internally in the CPU and must be explicitly 

programmed. 

to relieve the CPU of the overhead associated with formatting the 

message/data, computing where the data is to be send, etc. The Transpu- 

ter must take time to program the serial 1/0 channels with such informa- 

tion--time that could have been spent by the CPU in executing an ACSL 

program. 

processor has been announced by Inmos and should be available soon. 

This will make the Transputer family more attractive to number-crunching 

applications, but for now it will not be considered further in this 

application (Cushman 1987). 

A disadvantage of the 

For maximum speed, an external 1/0 processor should be used 

A new upgraded Transputer with a built-in floating point 

Fairchild Clipper 

The Fairchild Clipper represents to some the state of the art in 32 

bit microprocessors. 

CISC and RISC in that it contains a microprogram ROM to execute complex 

instructions, but this ROM is by-passed when the Clipper executes a more 

primitive instruction. 

processors while still enjoying the sophisticated instructions of a 

CISC. Another feature of the Clipper is that it contains a complete 4 K  

byte data cache, a 4K byte instruction cache, and a floating point 

processor on-board. 

This three chip set is actually a blend between 

This offers the high MIPS rate of RISC 

The Clipper's register file contains 32 general 
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purpose registers that can be used for data or addressing, and eight 64 

bit registers that are dedicated to floating point calculations. 

Clipper instruction set contains 101 hardwired single clock cycle 

instructions and 67 microprogrammed complex instructions. Instruction 

lengths vary from 16 to 64 bits wide in multiples of 16 bits (Hunter 

1987). 

The 

VLSI 86C010 

The VLSI 86C010 is intended to be a low cost RISC 32 bit micropro- 

cessor. Due to its standard von Neumann architecture, slow clock speed, 

and small register file, it will be a low performance device as well and 

will not be considered for this architecture (Cushrnan 1987). 

TI 74AS88XX and AMD 29300 

The remaining two processor families, the TI 74AS88XX and the AMD 

29300, are very similar architectures, and many designers mix and match 

various family members from both manufacturers when designing a system. 

Both of these processors are fixed-width 32 bit bit-slice microproces- 

sors. A bit-slice CPU is composed of various parts that let a user 

configure his architecture for his application. Using a bit-slice CPU 

does increase your parts count, but this is offset by the fact that a 

bit slice system usually offers superior performance to that of a fixed 

architecture microprocessor. As in a classic RISC machine, a bit slice 

processor executes one microinstruction per clock cycle. The designer 

has the option of including complex instructions in the architecture by 

writing a microprogram (with the primitive microinstructions) to 

implement the complex function (Cushman 1987). 
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Microprocessor Selection 

The three most impressive microprocessors in the survey are the AMD 

29000, the Fairchild Clipper, and the TI 74AS88XX family. All three 

offer similar instruction sets. The Clipper does offer more complex 

instructions than the others, but this is offset by the fact that these 

instructions take multiple clock cycles to execute. As far as register 

files are concerned, all three processors offer a large number of 

registers with the Clipper having 32, the 74AS88XX having an expandable 

65 word register file, and the AMD 29000 boasting an impressive 192 

general purpose 32 bit registers. 

selecting a microprocessor is the execution speed or MIPS rate of each 

processor. Given that all three processors can execute a simple 

instruction in one clock cycle, the limiting factor in performance 

becomes the access time to the instruction cache or instruction memory. 

A processor cannot execute instructions faster than it fetches them. 

The last factor to consider before 

The Clipper contains a 4K byte instruction cache configured as a 

four-way set associative cache with a quadword line buffer. 

total access time for the quadword line buffer is 60nS and the total 

access time for the main cache memory is 120nS, then depending on the 

instruction length (16 to 64 bits), the average access time for in-line 

code would be given by table 4 (Hunter 1987). 

If the 

Examining these calculations shows that even if all the Clipper 

instructions were 16 bits long, the highest MIPS rate possible would be 

15 MIPS. 

load the quadword line buffer or the main cache memory. Unless the 

cache mechanism can be disabled and the Clipper allowed to fetch one 

instruction word per clock cycle, it appears that in this application 

This figure does not take into account the time necessary to 
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TABLE 4 

AVERAGE INSTRUCTION ACCESS TIMES FOR CLIPPER 

ACCESSES TO ACCESSES TO 
INSTRUCTION LINE BUFFER MAIN CACHE TOTAL AVG. 
SIZE @60nS EACH @120nS EACH ACCESS TIME 

(where the program will be executed totally out of high-speed static 

RAM) the cache system will deteriorate performance rather than enhance 

it. 
The AMD 29000 offers several access protocols: simple access, 

pipelined access, and burst-mode access. All of the access protocols 

will fetch instructions at a 25MHz rate, but the burst-mode is easier to 

implement, since there are not as many address transfers or decodes to 

perform (Johnson 1987b). 

The TI 74AS88XX uses a simple pipelined approach to access program 

memory. A microsequencer places an address on the microprogram memory, 

and the same clock edge that updates the microsequencer address output 

latches the previously addressed output from the microprogram memory 

into the instruction register. This allows instructions to be executed 

and fetched at a maximum rate of 20MHz (Texas Instruments, Inc. 1985). 

After examining the results of the above analysis and the features 

contained in each of the microprocessors, it appears that the AMD 29000, 

with its 192 general purpose registers and 25 MIPS execution rate, 

offers the best solution. A block diagram of a PE constructed with an 

AMD 29000 is shown in figure 9 (Johnson 1987a). The TI bit-slice 
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processor family offers approximately the same performance (or possibly 

slightly higher, depending on the efficiency of its FPU) as the AMD 

29000, but due to the complexity and size of this bit-slice CPU, it was 

not selected. 

with several layers of memory hierarchy, ranging from very fast to 

extremely slow. 

unit decreases the effective access time from 500nS for dynamic RAM to 

around 100nS, a 500X improvement in performance, but, the Clipper does 

not seem well suited to this particular application (Hunter 1987). 

The Clipper performs at its best when used in systems 

The Clipper's elaborate cache and memory management 

Understanding The AMD 29000 

For those not familiar with the AMD 29000, there are a few details 

about its programming that should be understood. Due to its pipelined 

architecture, the AMD 29000 uses a delayed branch mechanism. With a 

delayed branch, the instruction immediately following a branch instruc- 

tion will always be executed. 

can be placed after a-branch instruction, the branch instruction has an 

execution time of one clock cycle; otherwise, a NOP instruction will 

have to follow the branch, giving the branch instruction an effective 

In the case where a useful instruction 

execution time of two clock cycles. 

The AMD 29000 has a unique way of handling conditional instruc- 

tions. Instead of having a flag register which all conditional instruc- 

tions use, the AMD 29000 allows conditions for instructions to come from 

any general purpose register. Certain instructions set true or false 

boolean values in a general purpose register, values that conditional 

branch instructions can use at a later time to determine whether to take 

a branch or to continue execution (Johnson 1987b). 
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Microprogram Timing Analysis 

The following paragraphs will examine the execution times of the 

AMD 29000 assembly language ACSL construct routines, shown in Appendix 

B, and specify the assumptions and conditions used to obtain these 

speeds. 

the ACSL construct routines is shown in table 5. 

A summary of the execution times and the average MIPS rates for 

TABLE 5 

MICROPROGRAM TIMING RESULTS 

INSTRUCT IONS AVERAGE EXECUTION 
CONSTRUCT EXECUTED MIPS TIME (nS) 

ABS ,1  25 40 
ACOS 35 12.5 2800 
AINT 7 12.5 560 
ALOG 62 12.8 4840 
AMAXO 7 WNT+ 1 2 varies (7*CNT+21)*40 
AMAX1 7*CNT+12 varies (10*CNT+21)*40 
AMINO 7*CNT+12 varies (7*CNT+21)*40 
AMIN1 7 WNT+ 12 varies (10*CNT+21)*40 
AMOD 40 12.99 3080 
AS IN 31 12.5 2480 
ATAN 77 12.5 6160 
BCKLSH 24 15.38 1560 

cos 28 12.5 2240 

DEAD 21 14.58 1440 
DELAY 12 21.42 560 
DERIVT 41 13.31 3080 
DIM 10 15.63 640 
EXP 31 12.5 2480 
EXPF 39 13.0 3000 
FCNSW 15 21.43 700 
GAUSS 153 15.61 9800 
HARM 47 13.06 3600 
IABS 5 12.5 400 
IDIM 4 25 160 
INT 5 12.5 400 
INTEG : 
RUNGE - KUTTA 4 3+4f:FUNCTION 12.5 32 80+4f:FUNCTION 
PREDICTOR 14+FUNCTION 12.5 960+FUNCTION 
CORRECTOR 16+FUNCTION varies 1160+FUNCTION+DELAY 
ISIGN 5 12.5 400 
LIMINT 16 15.39 1040 

------------I---- ....................................................... 

BOUND 20 16.67 1200 

DBLINT 18 16.08 1120 



TABLE 5--Continued. 

INSTRUCTIONS AVERAGE 
CONSTRUCT EXECUTED MIPS 

EXECUTION 
TIME (nS) 

LSW 
MAX0 
MAX1 
MINO 
MINl 
MOD 
PTR 
PULSE 
QNTZR 
RAMP 
RSW 
RTP 
SIGN 
SIN 
SQRT 
STEP 
TAN 
UNIF 
ZHOLD 

3 
7*cNT+9 
7WNT+16 
7 *CNT+9 
7 WNT+ 1 6 

55 
70 
31 
60 
10 
3 

353 
5 
32 
245 
10 
32 
17 
3 

25 
varies 
varies 
varies 
varies 

25 
12.5 
16.15 
17.05 
15.63 
25 
13.81 
12.5 
12.5 
15.09 
16.67 
12.5 
14.66 
25 

120 
(7*CNT+15)*40 
(10*CNT+29)*40 
( 7 f:CNT+15 ) 240 
(lO*CNT+29)*40 

2200 
5600 
1920 
3520 
640 
120 

25560 
400 
2560 
16240 
600 
2560 
1160 
120 

Assumptions Used In Analysis 

The following assumptions were made in the analysis of the ACSL 

construct routines: 

1. Operands (except where noted) are contained in internal 
registers in the AMD 29000. 

2. There will be a 100% hit ratio in the Branch Target 
Cache. 

3. Instruction memory will accommodate one cycle accesses. 

4. Load and store instructions require two clock cycles 
f o r  execution, and all other instructions used require 
only one clock cycle. 

5. All floating point operands are 32 bit single precision 
values. 

Since there are 192 general purpose registers in the AMD 29000 and 

for a large number of PES there will be a relatively small number of 

operands per PE, the assumption that all operands will be held in 
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internal CPU registers is not unreasonable. This assumption is verified 

by examining the microcoded routines in appendix B. 

single routine that uses more than a ten registers. 

There is not a 

The AMD 29000 contains a Branch Target Cache which holds informa- 

tion regarding the 32 most recent branches. 

executed the four instructions at the target location are saved in the 

Branch Target Cache. When the branch is executed again, the processor 

pipeline is filled with instructions from the Branch Target Cache, 

allowing the processor to proceed without having to wait for the pipe- 

line to refill. 

derivative section repetitively and the construct routines tend to 

contain in-line code, it is safe to say that branches taken will be 

contained in the Branch Target Cache. 

The first time a branch is 

Since ACSL programs execute the same code in the 

In order to have memory fast enough to allow one-cycle accesses, 

static RAM memory with access speeds of 20nS or less will have to be 

used. 

devices on the market today with speeds of 15nS to 20nS. 

This does not present a problem since there are several memory 

All AMD 29000 instructions (except LOADM and STOREM) are designed 

to execute in one clock cycle. Unfortunately, the LOAD and STORE in- 

structions will require two clock cycles to execute when instructions 

are being fetched at a rate of 25 MHz (one per clock cycle), because the 

address bus is shared between data operations and instruction fetches. 

The processor will require one clock cycle to generate the LOAD or STORE 

instruction address and another clock cycle to generate the operand 

address. 

access memory, the loading and storing of data operands will be trans- 

parent, since the operand address generation will be performed during 

In applications where multiple clock cycles are required to 
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the the time periods (referred to as wait states) the CPU is waiting for 

instruction memory. 

Using 32 bit floating point operands will provide sufficient 

resolution and accuracy for the majority of applications. 

precision operands are required, execution times will not significantly 

increase, since the AMD 29027 FPU performs double precision operations 

in the same amount of time as single precision operations. 

additional requirements will be the time necessary to load and unload 

the extra words to and from the FPU and the extra storage required for 

the larger operands. 

If double 

The only 

- An Optimal CPU/FPU 

After examining the characteristics of the AMD 29000 microproces- 

sor, it becomes obvious that a theoretical processor with different 

features could significantly improve the performance of this architec- 

ture. Possible improvements to the processor include the following: 

1. Separate address buses for instructions and data. 

2. Integral floating point unit. 

3. Non-pipelined operation, both in the CPU and the FPU. 

The only factor keeping all construct routines from operating at 25 

MIPS is the fact that two clock cycles are required for a LOAD and a 

STORE operation. If separate address buses for instructions and data 

were used, an instruction could be fetched and a data value stored in 

one clock cycle, thus bringing the average MIPS rates in table 5 to 25 

MIPS. 

An integral floating point unit could improve system performance by 

reducing the burden of loading and unloading operands to and from the 

FPU. Currently, two clock cycles are required to load or unload 32 bit 
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operands; but with an integral FPU, external accesses could be 

eliminated by sharing internal registers. 

Pipelining is a common technique used to improve the throughput of 

a CPU; unfortunately, it can cause additional delays when branches are 

encountered. 

lined in order to avoid the branch problem. The AMD 29027 FPU is also 

pipelined for maximum execution speed. 

pushed through the unit with instruction or operand writes until the 

result is present at its outputs. This fact significantly increases 

execution time for floating point operands by causing the FPU to take up 

to 40011s to compute a result when it is capable of performing the same 

operation in 200nS. 

be dependent on two cycle LOAD or STORE instructions. 

The optimal CPU for this architecture will not be pipe- 

The data in the FPU must be 

For the optimal FPU, pipeline advancement would not 

Input/Output Processor 

In order for a parallel processing system to operate at peak 

performance levels, the interprocessor communication structure must be 

fast and efficient. The 1/0 processor must be able to retrieve vari- 

ables from the interconnection bus network and deposit them into the 

CPUs memory as fast as possible to minimize the communication overhead 

of the parallel processing system. Although it is beyond the scope of 

this paper to design an 1/0 processor, the following paragraphs will 

attempt to describe a possible 1/0 processor in sufficient detail to 

derive realistic times for the communication delays. 

Intelligent versus Nonintelligent I/O Processors 

There are two basic extremes when it comes to 1/0 processor design, 

the intelligent 1/0 processor and the nonintelligent 1/0 processor. 
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The intelligent 1/0 processor is characterized as having a programmable 

CPU and the nonintelligent 1/0 processor is characterized as being a 

collection of dumb, hardwired state machines. 

The intelligent 1/0 processor has the advantage of being able to 

handle errors intelligently, perform more complex tasks, and make the 

system architecture flexible in terms of packet length, content, and 

format. 

advantage over a programmable 1/0  processor since it simply reacts to 

conditions instead of analyzing them first. 

The nonintelligent or hardwired 1/0 processor has a speed 

Perhaps the optimal solution is an 1/0 processor that is a blend of 

the two extremes. It could contain intelligence in the form of a micro- 

processor which would monitor the communication process, including the 

complex scheduling of interprocessor transfers. As long as processes 

were proceeding normally, the microprocessor would do nothing, and the 

hardwired data transfer circuitry could proceed at a maximum rate. If 

an error was detected or some unusual condition occurred, the micro- 

processor could step in and conduct error recovery or tell the hardware 

how to handle the unusual condition. 

Packet Formats 

Now that an 1/0 processor configuration has been decided upon, a 

data communication format may be chosen. Figure 10 shows various packet 

formats that could be used. To simplify the 1/0 processor design, all 

packets will use a 32 bit fixed length with one extra bit on the start 

of the packet to designate what type packet it is, and an extra bit on 

the end for parity checking. If the prefix bit is a zero, that packet 

contains a data word; if the prefix bit is a one, that packet contains a 

command that is directed to one or more PES. 



43  

1 
d 

- 

> 
I- 
H 
(I a 
n 

n 
(III 
0 
2z 

a 
a I- 
(21 

d 

m 
I- 
H 
m 

- 

>- 
I- 
H 
(I a 
n 

L 

Z 
0 
H 
l- 

H 
(I 
0 cn 
W 
c3 

a 

a 

0 
d 

al 



44 

Interprocessor Communication Times 

Using the model of the fiber optic star interconnection network 

shown in figure 3,  the model of the 1/0 processor discussed in the 1/0 

processor sections, and the model of the communication structure shown 

in figure 10, an approximation of the time to transfer data from one PE 

to another can be determined as shown in table 6 .  

Table 6 gives a total time of 51 clock cycles at the fiber optic 

star bus frequency and 7 clock cycles at the CPU clock frequency to 

transfer a data word to an intracluster PE. 

bus frequency of 300MHz and a CPU frequency of 25MHz, the communication 

delay time for intracluster transfers will be 450nS. Assuming there is 

no waiting for access to the intercluster fiber-optic star, no 

additional delay will be added to the communication delay time for an 

intracluster transfer. 

Using a fiber optic star 
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TABLE 6 

INTRACLUSTER COMI"ICATI0N ANALYSIS 

CLOCK 
CYCLE FUNCTION PERFORMED 

TRANSMITTING 



CHAPTER 5 

ARCHITECTURAL EVALUATION 

Chapter 5 will attempt to give a better understanding of the per- 

formance of this direct-execution parallel architecture by evaluating 

two ACSL programs in terms of execution speeds and computing resources 

required. 

Armstronp; Cork Benchmark 

The Armstrong Cork benchmark, shown in table 2, will now be evalu- 

ated to determine the minimum real-time calculation nterval possible 

(Hannaver 1986). 

allocate the program constructs to the various PES and clusters in the 

system. One such allocation of clusters is shown in figure 11. In 

order to insure maximum execution speed, equations should be factored 

The first step in analyzing an ACSL program is to 

for ease of computation. The resulting factored equations that will be 

integrated every calculation interval are listed below: 

XlDOT = Xl*(-Kl-K3*X4-K7*X3) 

X2DOT = 

X3DOT = K6*XS~X5+X3"(-K7*Xl-K8*X4) 

X4DOT = X4*(-K3*X1-K4*X4-K8~X3-K9)+K2*X2+K6*X5*X5 

X5DOT = X5*X5(-K5-K6)+K3*X12X4 

X6DOT = X4*( K4;kX4+K8*X3)+K5f;X5*X5. 

Using the allocation of computing tasks shown in figure 11, the 

46 
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calculation times and resources required at each cluster were derived 

and shown in table 7. The corrector routine of the parallel predictor- 

corrector method will always take longer to execute than the predictor 

routine; therefore, only the corrector routine will be analyzed. For 

the sake of simplicity, it will be assumed that the derivative function 

is evaluated entirely on one PE. 

equation for the output function EPS. 

five additions which can be evaluated in 1.2uS. 

Cluster 7 w i l l  be used to evaluate the 

The equation for EPS will require 

TABLE 7 

ARMSTRONG CORK CLUSTER ACTIVITY 

DERIVATIVE CORRECTOR 
EVALUATION EVALUATION PES 

CLUSTER TIME TIME USED 

To obtain the minimum calculation interval possible with this 

configuration, the communication delay times of all the state variables 

must be considered. Since all state variables are used in other equa- 

tions, their values must be updated every calculation interval. The 

updating of values will be done after the derivative function is inte- 

grated and will result in an additional delay of 1.34uS. The output 

function EPS will be transmitted to the host computer every calculation 
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interval for recording. The minimum calculation interval can now be 

determined by taking the worst execution time for the clusters and 

adding it to the update delay, 1.34uS. 

cluster 4 (3.85~s); therefore, the minimum real-time calculation 

interval is found to be 5.19uS. This value could possibly be lowered by 

dividing the function X4DOT among two or more PES for evaluation. 

this method is taken, care should be taken to insure that communication 

bottlenecks to not occur due to excessive task division. 

The slowest executing cluster is 

If 

Dragster Benchmark 

The DERIVATIVE portion of an ACSL program named Dragster is shown 

in table 8 (Hannaver 1986). 

the same fashion the Armstrong Cork program was examined. Figure 12 

shows several clusters of PES connected by the intercluster fiber optic 

star and the various functions allocated to each cluster. 

The Dragster program will be analyzed in 

The calculation activity at each cluster will now be explained in 

detail: 

Cluster 1. 
obtain OMEGAE. The derivative function will require 1.64uS to evaluate, 

thus making the integration last 3.25uS. 

Cluster 1 is responsible for performing an integration to 

Cluster 2. The integration of OMEGAT will use five PES, two to perform 

the predictor-corrector algorithm, one to evaluate the equation for TE, 

one to evaluate the equation for FRIC, and one to evaluate the equation 

for FT. 

evaluate and transmit to the PES responsible for integration and the 

equation f o r  FRIC will require 1.65uS to compute and transmit to the PE 

evaluating FT. The equation for FT will require 690nS to calculate 

The equation for the variable TE will require 0.85uS to 
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TABLE 8 

DRAGSTER PROGRAM 

DERIVATIVE 

'THROTTLE CONTROL' 
CONSTANT TRC = 1.3 

' ENGINE ' 
OMEGAE = INTEG( (GEAR*OMEGAT - OMEGAE) /TAUE, OMEGEO ) 
TE = TRC*TN(OMEGAE) 

CONSTANT OMEGEO=100 
CONSTANT GEAR = 3.0, TAUE = .1 

'REAR TIRE' 
IT = 0.5*(MT/GC)*RT**2 
OMEGAT = INTEG( (TE - RT*FT)/IT, OMEGTO) 
FT = FRIC*((MB + MT)*G/GC - FF) 

CONSTANT OMEGTO=O 
CONSTANT MT = 150., RT= 1.8 

'ROAD FRICTION' 

LS1 = SLIP.GT..15 
LS2 = SLIP.GT..2 
FRIC = RSW( .NOT.LSl, (1.4/.15)*SLIP, 0.) + 

SLIP = (RT~OMEGAT - V)/VMAX 

RSW( LSl.AND. .NOT.LS2, 1.4, 0.) + 
RSW( LS2, .65, 0.) 

CONSTANT VMAX = 500. 

'FORWARD MOTION' 
VDT = (FT-FD)/((MB + MT)/GC) 
V = INTEG( VDT, VO) 
x = INTEG( v, xo) 

CONSTANT VO = O., XO = 0. 
CONSTANT MB = 1500. 

'AERODYNAMIC DRAG' 
FD = .5*(RHO/GC)*CD*A*V**2 

CONSTANT A = 12., CD = .15, RHO = .081 

'BODY ROTATION' 
SINTP = SIN(THETA + PHI) 
COSTP = CON(THETA + PHI) 
IB = (MB/GC)J:(l + LCGn*2) 
OMEGAB = INTEG((TE + LWBnFF + (MB/GC)*LCG"VDT*SINTP - 

(MB~~G/GC)*LCG*COSTP)/IB, OMEGBO) 
THETA = INTEG( OMEGAB, THETAO) 

CONSTANT OMEGBO=O., THETAO=O. 
CONSTANT LCG=4., LWB=18., PHI = .174533 

'FRONT SUSPENSION' 
FF = BOUND( 0,5000. , -LWB:" (KS:"THETA + KD:"OMEGAB) ) 
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TERMT( (TIME. GT : RUNTIM) . OR. (X. GT . W) . OR. FLIP) 

TABLE 8--Continued 

~. 
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CONSTANT KD = loo., KS= 8400. 

'RUN TERMINATION' 
FLIP = THETA.GT.l 

'@RECORD(RECOl,,,,,,,,OMEGAE,VDT,V,X,OMEGAB,THETA, ... 
OMEGAT , TIME ) ' 

END $ ' DERIVATIVE ' 

after the value for FRIC is received, making the execution time from the 

start of the calculation interval for evaluating and transmitting FT 

equal to 2.34uS. 

Once TE and FT are computed, the integration of OMEGAT' can con- 

tinue. The execution time for the derivative expression (measured from 

the start of the calculation interval) is 3.53uS, thus making the total 

time necessary to calculate OMEGAT equal to 5.14uS. 

Cluster 2. 
for VDT can be evaluated on two PES in 1.48uS, thus making the evaluation 

time for the integration 3.09uS. 

Cluster 3 is responsible for integrating VDT. The equation 

Cluster - 4 .  Cluster 4 is responsible for integrating the variable V. 

The integration will take 1.61uS. 

Cluster 5. 
tive of OMEGAB is composed of FF, SINTP, and COSTP; therefore, values 

for FF, SINTP, and COSTP will first be evaluated simultaneously on 

separate PES to decrease the derivative function evaluation time. FF 

will require 2.051s to evaluate and transmit; SINTP will require 1.97uS 

Cluster 5 is responsible for computing OMEGAB. The deriva- 
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F i g u r e  12. Cluster A l l o c a t i o n  f o r  D r a g s t e r  Program 
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to calculate and transmit; and COSTP will require 1.81uS to compute and 

transmit. The function evaluation time for the derivative of OMEGAB 

will require 2.841.1s (after FF, SINTP, and COSTP are computed), bringing 

the integration time for OMEGAB to 4.45uS. 

cluster execution time of 6.5uS. 

This results in a total 

Cluster 5. 
OMEGAB. The execution time for this integration is 1.61uS. 

Cluster 6 is responsible for integrating the variable 

A summary of the cluster execution times and the resources required 

for the Dragster program is shown in table 9. As in the Armstrong Cork 

program, the update times must be computed before the maximum calcu- 

lation interval may be derived. There are 10 variables used by the 

different clusters of PES and the host computer (who records values for 

plotting). 

calculated, an additional delay of 450nS will result. Adding this delay 

When the variables are updated as soon as a new value is 

to the slowest executing cluster (6.5uS) shows the minimum real-time 

calculation interval is 6.95uS. With further analysis, it is possible 

that this value could be lowered with a more judicious allocation of 

processing resources. 
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TABLE 9 

DRAGSTER PROGRAM CLUSTER 

DERIVATIVE CORRECTOR 

ACTIVITY 

TOTAL 



CHAPTER 6 

DISCUSSION OF RESULTS 

A direct-execution parallel architecture has been presented that 

includes an interconnection topology, the requirements for the allo- 

cater, a model of a processing element, a model of an 1/0 processor, the 

interprocessor communication formats, a survey of current 32 bit RISC 

microprocessors, a model of an ideal microprocessor, and the micro- 

programming for the ACSL constructs. Armed with the above items, the 

execution times and the resources required for two ACSL programs were 

determined as shown in chapter 5. It should be noted that the execution 

times derived in chapter 5 are the actual values that should be expected 

if the architecture was implemented, since all pertinent variables were 

considered (such as interprocessor communication times and the required 

data logging). 

Parallel versus Serial Execution 

To get a better understanding of the results of chapter 5, the 

execution speeds obtained for the Armstrong Cork program and the 

Dragster program will now be compared to execution speeds for the same 

programs obtained from a sequential direct-execution architecture. 

Assuming that a 25MHz AMD 29000 and an AMD 29027 FPU were being used and 

that they were executing exclusively from high-speed static RAM with no 

wait states, then the resulting execution speeds for the Armstrong Cork 

program and the Dragster program would be the values shown in table 10. 

55 
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TABLE 10 
COMPARISONS BETWEEN SEQUENTIAL AND PARALLEL IMPLEMENTATIONS 

One major difference between the parallel implementation and the 

sequential implementation is the type of integration routine used. 

Since there is only one PE in the sequential approach, naturally the 

parallel predictor-corrector method cannot be used; instead, a serial 

form of the predictor-corrector method obtained from the Adams pair 

shown below will be used (Liniger and Miranker 1966): 

Yp(n+l) = Y(n) + .5h(3Fc(n) - Fc(n-1)) and 

Yc(n+l) = Y(n) + .Sh(Fp(n+l) + Fc(n)). 

The time required to compute the above two equations when executed 

on a single PE is given by: 

Serial Integration Time = 1.68uS + 2"(DET). 

In contrast, the execution time for the parallel corrector algorithm is 

represented by: 

Parallel Integration Time = 1.16uS + DET + CD. 

DET represents the derivative evaluation time and CD is the communi- 

cation delay. 

corrector method with the serial case shows that the parallel method 

Comparing the execution time for the parallel predictor- 



57 

(for a 450nS communication delay) will out-perform the serial method by 

a factor of 1.04 to 2.0, depending on the derivative evaluation time. 

These comparisons assume that the derivative evaluation times are the 

same for both the parallel case and the serial case. This will not be a 

valid assumption in an optimal parallel system, since a complex 

derivative function would be divided among several PES, thus reducing 

its derivative evaluation time. 

Armstrong Cork Program 

Summing the individual serial integrations for the Armstrong Cork 

program results in a total execution time (per calculation period) of 

30.32~s. 

serial system executes 5.84 times slower than the parallel system. 

theoretical maximum increase of 12 (for the derivative evaluated on a 

single PE) was not realized, because the communication delays necessary 

to update state variables in the parallel system and the overhead 

associated with evaluating the predictor-corrector equations were not 

zero. If the communication delays and the overhead for computing the 

integration equations are assumed to be zero, or the derivative 

evaluation times are large enough to make the communication delays and 

the overhead for the integration equations negligible, then the parallel 

architecture will operate 12 times faster than the serial architecture. 

Comparing this value with the parallel case shows that the 

The 

Dragster Program 

The parallel version of the Dragster program had a slightly larger 

execution speed increase (over the serial version) than the Armstrong 

Cork program. This was due to the complexity of the derivative func- 

tions evaluated and the nature of their equations. Two of the deriva- 
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tive functions were broken down into smaller parts and computed in 

parallel, thus giving an additional increase in execution speed. If the 

communication delays and integration equation evaluation times are 

assumed to be negligible, the parallel architecture will execute eight 

times faster than the serial architecture. Since two of the derivative 

functions do not require any time to calculate, the theoretical maximum 

speed will be limited to eight times the serial method, not twelve as in 

the Armstrong Cork program. The theoretical maximum speed ratio assumes 

that the derivative functions are executed on individual PES; in order 

to increase the parallel processing execution times, the allocater could 

distribute complex derivative functions among several PES to allow their 

computation in parallel. 

Conclusions 

It has been shown that the combination of parallel processing and 

direct-execution concepts significantly increases execution speeds of 

ACSL simulations. 

is, the more benefits parallel processing will provide. It is also 

apparent that the communication delays have a direct bearing on archi- 

tecture performance, especially when simple derivative functions are 

being evaluated. The optimum environment for parallel processing occurs 

when the derivative functions are large enough to make the communication 

delays negligible and large enough to allow their restructuring in order 

to execute portions of them in parallel. 

It appears that the more complex a given ACSL program 

The direct-execution concepts benefit both parallel and sequential 

architectures by generating the most efficient code possible. 

advantages of a direct-execution architecture are highlighted by ACSL 

programs. The simple, repetitive flow of ACSL programs, along with the 

The 
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ultra-efficient code generated by the direct-execution approach, allows 

an ACSL program to be executed to reside in a small block of high-speed 

static RAM. 

(due to parallel processing) further enhances performance by allowing 

variables to be stored in internal CPU registers, rather than slow main 

memory. 

this manner, performance levels not achievable with sequential computers 

using compiled code will become a reality. 

The small number of operands assigned to individual PES 

By implementing a direct-execution parallel architecture in 
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APPENDIX A 

DATA FLOW GRAPHS FOR ACSL CONSTRUCTS 

The data flow graphs shown on the following pages represent the 

data flow between PES in a parallel processing system. In all the 

graphs, a vertex represents one PE and the directed arcs represent the 

direction data flows between PES. 

As illustrated by the graphs, very few of the construct routines 

contain parallelism. The AMAX, AMIN, MAX, and MIN type constructs 

contain parallelism such that the optimum number of PES used to evaluate 

the functions depends on the number of operands. The integration 

construct is implemented with a two processor parallel predictor- 

corrector algorithm. It allows the prediction of the n+l value while at 

the same time correcting for the n value. 
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APPENDIX B 

MICROPROGRAMMED ROUTINES FOR ACSL CONSTRUCTS 

The microprogrammed ACSL routines shown follow standard AMD 29000 

assembly language formats, except for the LOAD and STORE instructions 

needed when loading or storing the FPU. Due to the recent introduction 

of the AMD 29027 FPU into the marketplace, there was no standard format 

available pertaining to the programming syntax of coprocessor LOAD or 

STORE instructions when this thesis was written, so one was devised as 

follows : 

STORE FPU INST PMUX,QMUX,TMUX/INSTRUCTION/REGISTER WRITE 

STORE FPU OPT OPERAND ill ,  OPERAND #2 

STORE FPU OP OPERAND ill ,  OPERAND #2 

LOAD FPU RES DESTINATION,RESULT SELECT 

The AMD 29027 will be operated in a pipelined mode. The three 

stage pipeline is represented by the three areas in the STORE FPU INST 

operand field. 

come from, the second area determines what operation is performed on the 

data, and the third area selects the internal FPU register (if any) to 

deposit results in. This STORE instruction does advance the pipeline. 

The first area determines where the ALU operands will 

The STORE FPU OPT indicates what operands to store in the R-TEMP 

and S-TEMP registers in the FPU. The operand #1 (if any) will be stored 

in the R-TEMP register, and operand H2 (if any) will be stored in the S- 

TEMP register. This type of instruction does not advance the pipeline. 

64 
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The STORE FPU OP indicates what data values to store in the R and S 

registers of the FPU. 

stores data in the same fashion as the STORE FPU OPT instruction, except 

it deals with the R and S registers rather than the temporary registers. 

This instruction does advance the pipeline and 

The LOAD FPU RES instruction reads the F port of the AMD 29027. 

The data read can be the least significant bits of the result, the most 

significant bits of the results, the flag register, or the FPU status. 
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ABS 

DESCRIPTION: 
real floating point expression. 

Absolute value of the argument expression x, where x is a 

EXECUTION TIME (WORST CASE): 40nS 
MEMORY WORDS REQUIRED: 1 
INPUTS: X 
OUTPUTS: Y 
CODE : 

AND Y,MSBCLR,X ;CLEAR THE MSB 
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I ACOS 

DESCRIPTION: Returns the arc-cosine, ACOS (X), where x is a floating 
point value between -1.0 and 1.0. Result is a real number in radians 

I between 0 and PI. 
I 
I EXECUTION TIME (WORST CASE) : 1 4uS 

MEMORY WORDS REQUIRED: 35 
INPUTS: X 
OUTPUTS: Y 
CODE : I 

STORE FPU OPT X, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,RFO,/-/RFO ;STORE X IN RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1 
STORE FPU OP A5,A6 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/- /RF2;ACCWLATE IN RF2 
STORE FPU OP A4, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+PkQ/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P*Q/ - 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF 1, RF2, R/ - /RF2 
STORE FPU OP A2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF 1 , RF2,1/ - /RF2 
STORE FPU INST -/T+P$cQ/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/P*Q/- 
STORE FPU INST R,-,RF2/-/RF2 
STORE FPU OP PI/2 
STORE FPU INST -/P-T/- ;PI/2 - SERIES 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ RESULT 

;ACCUM fc X 
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AINT 

DESCRIPTION: 
value and the output Y is a l so  a floating point value. 

Integerize the argument X where X i s  a f loat ing  p o i n t  

EXECUTION TIME (WORST CASE) : 28011s 
MEMORY WORDS REQUIRED: 7 
INPUTS: X 
OUTPUTS: Y 
CODE : 

STORE FPU OPT X ;LOAD OPERAND TO FPU 
STORE FPU INST , ,R/ - /  - ;CONVERT TO INTEGER 
STORE FPU INST -/INT(T)/- ;PUSH DATA THROUGH PIPE 
STORE FPU INST ,,RFO/-/RFO 
STORE FPU INST -/FP(T)/- ;CONVERT TO FLOATING PT. 
STORE FPU INST -/-/F 
LOAD FPU RES Y, F ;READ RESULT FROM FPU 



ALOG 

DESCRIPTION: Natural logarithm of real argument X where X is greater 
than 0. 

EXECUTION TIME (WORST CASE): 2.48uS 

INPUTS: X 
OUTPUTS: Y 
CODE : 

MEMORY WORDS REQUIRED: 48 

;COMPUTE (X- 1 ) / (X+l) 
STORE FPU OPT X,l 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST R,,S/-/RF3 
STORE FPU INST -/P+T/- 
STORE FPU INST RFl,,/-/RFl 

9 

;PERFORM DIVISION(RFO=RF3/RFl, WITH MUXES SET TO RFO,RFO,/-/RFO) 
;DIVISOR = RFl 
;DIVIDEND = RF3 
;QUOTIENT/RECIPROCAL = RFO 
9 

STORE FPU INST -/RECIP-SEED/- 
STORE FPU INST RFO , RFl ,2/ - /RFO 

;READY FOR FIRST ITERATION FOR RECIPROCAL DIVISION 
;EVALUATE Xi+l = Xi*(2-B*Xi) 

;SEED IN RFO 

9 

AGAIN: STORE FPU INST -/T-P*Q/- 
STORE FPU INST -IT-P*Q/- 
STORE FPU INST -/-/RF2 ;RF2=2-B*X(i) 
STORE FPU INST RFO,RF2,/-/- 
STORE FPU INST -/P*Q/- 
JMPFDEC COUNT,AGAIN ;DO "COUNT" ITERATIONS ( 3 ) 
STORE FPU INST RFO,RF1,2/-/RFO 

STORE FPU INST RF3,RFO,/-/- 

STORE FPU INST RFO,RFO,/-/RFO ;QUOTIENT IS IN RFO AND F 

;RFO= X(i+l) 
;MULTIPLY DIVIDEND BY 

STORE FPU INST -/PnQ/ -  DIVISOR. 
9 

;COMPUTE SERIES FOR ALOG 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 
STORE FPU OP A5,A6 
STORE FPU INST -/T+PnQ/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1, RF2, R/ - /RF2 ;ACCUMULATE IN RF2 
STORE FPU OP A4, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+PftQ/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P':Q/- 

;Y SQUARED IN RF1 
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STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A2 
STORE FPU INST -/T+PkQ/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,1/-/RF2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/PfcQ/- 
STORE FPU INST RF2,2,/-/RF2 
STORE FPU INST -/P*Q/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ RESULT 
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AMAXO 

DESCRIPTION: 
integers and the output is a floating point value. 

EXECUTION TIME (WORST CASE): (7"CNT t 21)*40nS 
MEMORY WORDS REQUIRED: 19 
INPUTS: J1, 52, 53, ... Jn 
OUTPUTS: Y 
PARAMETERS : 
CNT = NUMBER OF OPERANDS - 1. 
IPA = POINTING TO BEGINNING OF STRING 
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS) 

Determine the maximum argument where the inputs are 

CODE : 

AGAIN : 

SKIP : 

9 

9 

;WAIT FOR 
HERE : 

9 

9 

OR 
CPLE 
JMPT 
MFSR 
OR 
ADD 
JMPFDEC 
MTSR 

Y, IPA, 0 
COND, IPA, Y 
COND, SKIP 
COND , IPAREG 
Y, IPA, 0 

CNT, AGAIN 
IPAREG, COND 

COND , COND , #O 1 

STORE FPU OPT Y 
STORE FPU INST ,,R/-/- 
STORE FPU INST -/FP(T)/- 
STORE FPU INST R F O ,  ,R/ - / R F O  

RESULTS FROM OTHER PE 
JMPF OPER , HERE 
NOP 

STORE FPU OP X 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP , Y 

;IF VALUE < MAX, JUMP 

;POINT TO NEXT VALUE 

;CONVERT TO FLOATING PT. 

;SEND RESULT TO NEXT PE 
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AMAX1 

DESCRIPTION: 
p o i n t  va lues  and t h e  ou tpu t  is  a f l o a t i n g  p o i n t  va lue .  

EXECUTION TIME (WORST CASE): (lO*CNT + 21)*40nS 

Return t h e  maximum argument where t h e  i n p u t s  are f l o a t i n g  

MEMORY WORDS REQUIRED: 19 
INPUTS: X1, X2, X 3 ,  ... Xn 
OUTPUTS: Y 
PARAMETERS : 
CNT = NUMBER OF OPERANDS - 1 
IPA = POINTS TO START OF STRING 
(ASSUME ALL OPERANDS ARE IN THE GENERAL 
CODE : 

OR Y, IPA, 0 
STORE FPU OPT Y, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,,R/-/WO 

9 

AGAIN : STORE FPU OP IPA 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST R F O ,  ,R/-/RFO 
MFSR COND , IPAREG 

JMPFDEC CNT, AGAIN 
MTSR IPAREG, COND 

ADD COND, COND, HO 1 

9 

;WAIT FOR RESULTS FROM OTHER PE 
HERE : JMPF OPER, HERE 

NOP 

STORE FPU OP X 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP, Y 

* 

PURPOSE REGISTERS) 

;INITIALIZE FPU ACCUM. 

;LET FPU FIND MAXIMUM 

;STORE NEW MAXIMUM 

;IF NOT COMPARED ALL 
;DO ANOTHER. 

;SEND RESULT TO NEXT PE 
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AMINO 

DESCRIPTION: Determine t h e  minimum argument where t h e  i n p u t s  are 
i n t e g e r s  and t h e  output  is a f l o a t i n g  point  va lue .  

EXECUTION TIME (WORST CASE): (7*CNT + 21)$<40nS 
MEMORY WORDS REQUIRED: 19 
INPUTS: 51, 52, 53, ... Jn 
OUTPUTS: Y 
PARAMETERS : 
CNT = "MBER OF OPERANDS - 1. 
IPA = POINTING TO BEGINNING OF STRING 
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS) 
CODE : 

AGAIN : 

SKIP : 

9 

9 

9 

OR 
CPGE 
JMPT 
MFSR 
OR 
ADD 
JMPFDEC 
MTSR 

Y, IPA, 0 
COND, IPA, Y ;COMPARE CURRENT VALUE 
COND, SKIP ;TO CURRENT MINIMUM. 
COND, IPAREG 
Y, IPA, 0 
corn, COND , #O 1 
CNT, AGAIN ;IF NOT THROUGH, JMP 
IPAREG, COND ;POINT TO NEXT VALUE. 

STORE FPU OPT Y ;CONVERT MINIMUM VALUE 
STORE FPU INST ,,R/-/- ;TO FLOATING POINT. 
STORE FPU INST -/FP(T)/- 

STORE FPU INST RFO,,R/-/RFO 

;WAIT FOR RESULTS FROM OTHER PE 
HERE : JMPF OPER , HERE 

NOP 

STORE FPU OP X 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP,Y ;SEND RESULT TO NEXT PE 

9 

9 
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AMIN1 

DESCRIPTION: Return the minimum argument where the inputs are floating 
point values and the output is a floating point value. 

EXECUTION TIME (WORST CASE): (10*CNT + 21)*40nS 
MEMORY WORDS REQUIRED: 19 
INPUTS: X1, X2, X3, ... Xn 
OUTPUTS: Y 
PARAMETERS : 
CNT = NUMBER OF OPERANDS - 1 
IPA = POINTS TO START OF STRING 
(ASSUME ALL OPERANDS ARE IN THE GENERAL PURPOSE REGISTERS) 
CODE : 

OR Y, IPA, 0 ;INITIALIZE FPU ACCUM. 
STORE FPU OPT Y, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,,R/-/RFO 

9 

AGAIN : STORE FPU OP IPA ;LET FPU FIND MINIMUM. 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST RFO,,R/-/RFO 
MFSR COND , IPAREG 
ADD 
JMPFDEC CNT, AGAIN ;IF NOT COMPARED ALL 

;STORE NEW MINIMUM 

COND , corn, I10 1 

MTSR IPAREG, COND ;DO ANOTHER. 
9 

;WAIT FOR RESULTS FROM OTHER PE 
HERE : JMPF OPER,HERE 

NOP 

STORE FPU OP X 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP , Y ;SEND RESULT TO NEXT PE 

9 

9 
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AMOD 

DESCRIPTION: Remainder of modulus, AMOD(Xl,X2), where the floating 
point remainder of X1 divided by X2 is returned. 

EXECUTION TIME (WORST CASE) : 1.611s 
MEMORY WORDS REQUIRED: 26 
INPUTS: X 1 ,  X2 
OUTPUTS: Y 
CODE : 

MACRO FDIV( RFO , X 1 ,  X2 ) 

STORE FPU INST -/ROUND T/- 
STORE FPU INST R,RFO,/-/RFO 
STORE FPU OP X 2  
STORE FPU INST -/P*Q/- 
STORE FPU INST R,,RFO/-/RFO 
STORE FPU OP X2, 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F 

;DIVIDE X 1  BY X 2  AND 
;RETURN RESULT IN RFO. 
;ROUND RESULT TO LOWER 
;WHOLE NUMBER. 
;MULTIPLY ROUNDED RESULT 
;WITH l/DIVISOR. 

;SUBTRACT PRODUCT FROM 
;DIVIDEND. 

;READ THE REMAINDER. 
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AS IN 

DESCRIPTION: 
between -1.0 and 1.0, and the result is between -PI/2 and PI/2. 

EXECUTION TIME (WORST CASE) : 1.24uS 

The arc-sine of the real argument X is returned where x is 

I MEMORY WORDS REQUIRED: 31 
I INPUTS: X 
1 OUTPUTS: Y 

CODE : 

STORE FPU OPT X, 
STORE FPU INST -/P/- 
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1 
STORE FPU OP A5,A6 
STORE FPU INST -/T+P*Q/- 
STORE FFU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A4, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,l/-/RF2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+Pf:Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/P*Q/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F 

;ACCUM f: X 
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ATAN 

DESCRIPTION: Returns the arc-tangent of the real value X. 

EXECUTION TIME (WORST CASE): 3.08uS 
MEMORY WORDS REQUIRED: 104 
INPUTS: X 
OUTPUTS: Y 
CODE : 

;CHECK FOR X>1 
STORE FPU OPT X,l 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/FLAG 
LOAD FPU RES COMPREG,FLAG 

;CHECK > FLAG 
AND 
CPEQ 
JMPT COMPTEST, XOFR 
STORE FPU OPT X,-1 
STORE FPU INST R, , S / - / -  
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/FLAG 
LOAD FPU RES COMPREG,FLAG 

AND COMPREG, COMPREG , #08H 
CPEQ COMPTEST , COMPREG, #08H 
JMPT COMPTEST,XOFR 

STORE FPU OPT X, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO 
STORE FPU INST -/P$:Q/- 
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1 
STQRE FPU OP A5,A6 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF 1, RF2, R/ - /RF2 
STORE FPU OP A4, 
STORE FPU INST -/T+PkQ/- 
STORE FPU INST -/T+P$:Q/- 
STORE FPU INST RF1, RF2, R/ - /RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P$:Q/- 
STORE FPU INST -/T+P$:Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+Pf:Q/- 
STORE FPU INST RF1, RF2, R/ - /RF2 
STORE FPU OP A1 
STORE FPU INST -/T+Pf:Q/- 

COMPREG , COMPREG , # 1 OH 
COMPTEST , COMPREG , I/ 1 OH 

;CHECK < FLAG 

;X IS BETWEEN -1 AND +1 



STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1 ,RF2,1/-/RF2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/P*Q/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F 
JMP END 
NOP 

;ACCUM J( X 

XOFR : 
COMPUTE (((((((B7)Y+B5)Y+B4>YtB3)Y+B2)Y+Bl)Y+l)Z 

MACRO RFO=RECIP(X) ;PUT 1/X IN RFO 

STORE FPU INST RFO,RFO,/-/- 
STORE FPU INST -/PnQ/- 
STORE FPU INST RFl,S,R/-/RF1 

STORE FPU OP B5,B6 ;COMPUTE SERIES 
STORE FPU INST -/T+P*Q/ - 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP B4, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP B3 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP B2 
STORE FPU INST -/TtP*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF 1, RF2, R/ - /RF2 
STORE FPU OP B1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1, RF2,1/ - /RF2 
STORE FPU INST -/T+P:':Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/P:':Q/- 
STORE FPU INST R,,S/-/RFO 
STORE FPU OP X, 1 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST R,,RFO/-/F ;SEE IF X > 1 
LOAD FPU RES COMP,FLAG 
AND COMP , COMP, 10H ;CHECK > FLAG 
CPEQ COMP , COMP , # 1 OH 
JMPT COMP,SKIPNEG ;IF X > 1, JMP 
SOP 
OR PI02,NEGATE,PI02 ;MAKE PI/2 NEGATIVE 

;PUT l/(X;tX) IN RF1 
9 

;ACCUM f: X 
;RESULT IN RFO 
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SKIPNEG: STORE FPU OP PI02, 
STORE FPU INST -/P-T/- 
STORE FPU INST - / - / F  
LOAD FPU RES Y,F 

END : 
;READ RESULT 



BCKLSH 

DESCRIPTION: Used to implement the backlash or hysteresis operator. 

EXECUTION TIME (WORST CASE): 960x1s 
MEMORY WORDS REQUIRED: 28 
INPUTS: X 
OUTPUTS: Y 
PARAMETERS : 
2DL = WIDTH OF BACKLASH 
IC = INITIAL CONDITION ON THE OUTPUT. 
CODE : 

STORE FPU OPT X,Y 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
LOAD FPU RES DIFF,F 
AND TEMP1, DIFF, CONSTl 
AND DIFF, DIFF, CONST2 
STORE FPU OPT DIFF, 2DL 
STORE FPU INST R, , S /  - / -  

;COMPUTE X - Y 

;READ RESULT 
;REM STATUS ABOUT X-Y 
;TAKE ABS OF DIFFERENCE 
;COMPARE DIFF TO WIDTH. 

STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/FLAG 
LOAD FPU RES STATUS, FLAG 
AND STATUS, STATUS, 10H ; CHECK GREATER THAN FLAG 
CPEQ COND, STATUS, 10H ; IF WITHIN WIDTH, QUIT 
JMPF COND, END 
NOP 

;INPUT/OUTPUT DIFFERENCE OUT OF RANGE, SO ADJUST OUTPUT 
JMPF TEMP1 , POS ;CHECK IF + OR - DIFF. 
STORE FPU OPT X,2DL ;IN EITHER CASE, LOAD FPU 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/P+T/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F 
JMP END 
NOP 

;COMPUTE X + 2DL 

80 

9 

POS : STORE FPU INST R,,S/-/- ;COMPUTE X - 2DL 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F 

9 

END : 



BOUND 

DESCRIPTION: 
particular range. 

EXECUTION TIME (WORST CASE): 800nS 
MEMORY WORDS REQUIRED: 23 
INPUTS: X 
OUTPUTS: Y 
PARAMETERS : 
LL = LOWER LIMIT 
UL = UPPER LIMIT 
CODE : 

The bound function is used to limit a variable to a 

OR Y, x, l l00 ;ASSUME IN PROPER RANGE 
STORE FPU OPT X, LL ;COMPARE X AND LL 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/FLAG 
LOAD FPU RES COMP, FLAG 
AND COMP, COMP, 10H ;CHECK > FLAG 
CPEQ COMP, COMP, 10H 
JMPT COMP, SKIPIT 
NOP 
OR Y, LL, 00 ;SET OUTPUT TO LL, QUIT 
JMP END 
NOP 

9 

SKIPIT: STORE FPU OPT X,UL ;COMPARE X AND UL 
STORE FPU INST R, , S / - / -  
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/FLAG 
LOAD FPU RES COMP,FLAG 
AND COMP, COMP, 10H ;CHECK > FLAG 
CPEQ COMP, COMP, 10H 
JMPF COMP, END 
NOP 
OR Y, UL, 00 ;SET OUTPUT TO UL 

END: 
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cos 
DESCRIPTION: Returns the cosine of the argument X where the result will 
be between -1.0 and 1.0 and the argument is in radians. 

EXECUTION TIME (WORST CASE) : 1.1211s 
MEMORY WORDS REQUIRED: 28 
INPUTS: X 
OUTPUTS: Y 
CODE : 

STORE FPU OPT X, 
STORE FPU INST R,R,/-/- 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 
STORE FPU OP A5,A6 ;COMPUTE SERIES. 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2;ACCUUTE IN RF2. 
STORE FPU OP A4, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/ - 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A2 
STORE FPU INST -/T+P$:Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF 1, RF2, R/ - /RF2 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+PnQ/- 
STORE FPU INST RFl,RF2,1/-/RF2 
STORE FPU INST -/T+P:kQ/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ RESULT 

;X SQUARED IN RF1. 
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DBLINT 

DESCRIPTION: Provided to limit the second integral of an acceleration 
I (displacement). 
I 

EXECUTION TIME (WORST CASE): 72011s 
MEMORY WORDS REQUIRED: 22 
INPUTS: XDD (ACCELERATION) 
OUTPUTS: X (DISPLACEMENT), XD (VELOCITY) 
PARAMETERS : 
XIC = INITIAL CONDITION ON DISPLACEMENT 
XDIC = VELOCITY INITIAL CONDITION 
LL = LOWER DISPLACEMENT LIMIT 
UL = UPPER DISPLACEMENT LIMIT 
CODE : 

(TO BE INSERTED AT THE END OF THE INTEGRATION ROUTINE) 

STORE FPU OPT X,UL 
STORE FPU INST R, ,S/-/- 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST - /  -/F 
LOAD FPU RES GPR1,F 
CPEQ COND, GPR1, X 
JMPF COND, SKIP 
NOP 
OR X,UL,OO 
AND XD,XD,oo 
JMP END 
NOP 

STORE FPU INST R,,S/-/- 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST - / -/F 
LOAD FPU RES GPR1,F 
CPEQ COND, GPRL, X 
JMPF END 
NOP 
OR X,LL, 00 
AND xD,XD,oo 

SKIP : STORE FPU OPT X,LL 

END : 

;FIND MAXIMUM OF X AND UL 

;READ RESULT OF OPERATION 
;SEE WHICH GREATER 
;IF X<UL, SKIP 

;MOVE UL TO X 
;MAKE VELOCITY = 0 

;FIND MINIMUM BTWN X, LL 

;SEE IF x IS MrNrm 
;IF NOT, SKIP 

;MAKE OUTPUT LL 
;MAKE VELOCITY 00 



DEAD 

DESCRIPTION: Used to create dead space in a system. 
limits, output is zero. 

EXECUTION TIME (WORST CASE) : 840nS 
MEMORY WORDS REQUIRED: 29 
INPUTS: X 
OUTPUTS: Y 
PARAMETERS : 
LL = LOWER LIMIT 
UL = UPPER LIMIT 
CODE : 

If X 

STORE FPU OPT X,UL 
STORE FPU INST R, , S /  - / -  
STORE FPU INST -/MAX P,T/ 
STORE FPU INST -/-/F 

;FIND THE G 

LOAD FPU OP GPR,F 
CPEQ COND , GPR , X 
JMPT COND , CVRUL 
NOP 

;NOW CHECK TO SEE IF X IS LESS THAN LL 
STORE FPU OPT X,LL 
STORE FPU INST R, ,S/-/- 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST -/-/F 
LOAD FPU RES GPR, F 
CPEQ COND, GPR, X 
JMPT COND , UNDLL 
NOP 

JMP END 
AND Y,Y,OO 

;DEAD SPACE 

9 

OVRUL : STORE FPU OPT X,UL 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
JMP END 
LOAD FPU RES Y, F 

9 

UNDLL : STORE FPU OPT X,LL 
STORE FPU INST R, ,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y, F 

EATER 

is between 

UE 

;READ RESULT 
;SEE IF X IS GREATER 
;IF X > UL, JMP 

;READ RESULT FROM FPU 
;SEE IF X LESS THAN LL 

;MAKE OUTPUT 0 

;CALCULATE X - UL 

;READ RESULT INTO OUTPUT 

;COMPUTE X - LL 

;READ RESULT INTO OUTPUT 
9 

END : 
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DELAY 

DESCRIPTION: Used t o  model de l ays  through such o b j e c t s  as p ipes .  A 
2%MX long a r r a y  is  c r e a t e d  t o  model the delay and is w r i t t e n  i n  a 
c i r c u l a r  f a sh ion .  It is i n i t i a l l y  f i l l e d  w i t h  t h e  v a l u e  IC. The 
p o i n t e r  t o  the ou tpu t  va lues  is set a f ixed  l e n g t h  from the p o i n t e r  t o  
t h e  i n p u t  v a l u e s  du r ing  t h e  preprocess ing  s t a g e  t o  r e p r e s e n t  t h e  
a p p r o p r i a t e  d e l a y  pe r iod .  

EXECUTION TIME (WORST CASE): 480nS 
MEMORY WORDS REQUIRED: 12 
INPUTS: X 
OUTPUTS: Y 
PARAMETERS : 
IC - INITIAL CONDITION OF OUTPUT UNTIL FIRST DELAY PERIOD. 
"DL - THE DELAY BETWEEN THE INPUT AND THE OUTPUT. 
NMX - A CONSTANT REPRESENTING THE NUMBER OF CALCULATION INTERVALS 
IN THE DELAY. 
START - STARTING ADDRESS OF TABLE. 
MAXPTR - LAST ADDRESS IN TABLE. 
CODE : 

STORE 
ADD 
CPEQ 
JMPF 
NOP 
OR 

SKIPCLR: LOAD 
ADD 
CPEQ 
JMPF 
NOP 
OR 

SKIP : 

X, INPPTR 
INPPTR, INPPTR, !IO 1 
COND , INPPTR , MAXPTR 
COND, SKIPCLR 

INPPTR, START, /IO0 

OUTPTR , OUTPTR , HO 1 

COND, SKIP 

Y , OUTPTR 

COND,OUTPTR,MAxPTR 

OUTPTR, START, !IO0 

;STORE NEW INPUT 
;POINT TO NEXT INPUT 
;SEE IF AT END OF TABLE 
;DON'T RESET IF NOT 

;RESET STARTING ADDRESS 
;READ NEW OUTPUT VALUE 
;POINT TO NEW OUTPUT 
;SEE IF AT END 

;RESET OUTPUT POINTER 
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DERIVT I 

DESCRIPTION: Implements a first order derivative function in the form: I 

I y = (Xnew - Xold)/(Tnew - Told) 
I 

I 
I EXECUTION TIME (WORST CASE): 1.48~~ 
, MEMORY WORDS REQUIRED: 23 

INPUTS: X 
I OUTPUTS: Y 

CODE : 
I 

; COMPUTE XNEW - XOLD 
STORE FPU OPT X,XOLD 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST R,,S/-/RF7 

STORE FPU OP T,TOLD 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/RF6 

MACRO F=FDIV(RF7,RF6) 

; COMPUTE TNEW - TOLD 

; COMPUTE X/T 

LOAD FPU RES Y,F 
OR TOLD, T, 00 
OR XOLD , X , 00 

;READ ANSWER FORM FPU 
;UPDATE OLD TIME VALUE 
;UPDATE OLD X VALUE 
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DIM 

DESCRIPTION: Positive difference function, DIM(Xl,X2). If X1 is 
greater than X2, returns Xl-X2, otherwise returns 0 .  

EXECUTION TIME (WORST CASE) : 400nS 
MEMORY WORDS REQUIRED: 10 
INPUTS: X1, X2 
OUTPUTS: Y 
CODE : 

STORE FPU OPT X1,X2 ;COMPUTE Xl-X2 AND COMP. 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/F 
LOAD FPU RES COMP,FLAG 
AND COMP , COMP , # 10 ;CHECK G.T. FLAG 
CPEQ COMP , COMP , I\ 10 9 

JMPT COMP , END ;IF X1 GT X2, JMP 
LOAD FPU RES Y,F ;READ Xl-X2 
AND Y9Y90 ;CLEAR OUTPUT 

END: 



EXP 

DESCRIPTION: Returns the natural exponential of the argument. 

EXECUTION TIME (WORST CASE): 1 . 2 4 ~ ~  
MEMORY WORDS REQUIRED: 31 
INPUTS: X 
OUTPUTS: Y 
CODE : 

;IMPLEMENT THE SERIES: 
;EXP(X)=l+X(l+X(AO+X(Al+X(A2+X(A3+X(A4+X(A5))))))) 

STORE FPU OPT X, ;PUT X IN RFO 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,R,S/-/RFO 
STORE FPU OP A5,A4 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO ,RF1 ,R/ -/RF1 
STORE FPU OP A3, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RFl,R/-/RF1 
STORE FPU OP A2, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RFl,R/-/RF1 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RFl,R/-/RF1 
STORE FPU OP AO, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST - /T+P*Q/ - 
STORE FPU INST RFO,RFl,l/-/RFl 
STORE FPU INST -/T+P:"Q/- 
STORE FPU INST -/TtP*Q/- 
STORE FPU INST RFO , RFl,l/ - /RF 1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ RESULT 

;ACCUMULATE IN RF1 
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EXPF 

DESCRIPTION: 
constant ON. 
created, and if ON is false, a decaying exponential from 1.0 to zero is 
implemented. 

Implements a switchable exponential depending on the 
If ON is true, a rising exponential from zero to 1.0 is 

EXECUTION TIME (WORST CASE): 1.56uS 
MEMORY WORDS REQUIRED: 39 
INPUTS: ON - SWITCH FUNCTION 
OUTPUTS: Y 
PARAMETERS : 
TA - TIME CONSTANT 
TO - TIME VALUE CORRESPONDING TO Y(0). 
STAGE] 
T - CURRENT TIME VALUE 
CODE : 

IC - Y(0) 
[EVALUATED IN THE PREPROCESSING 

; EVALUATE FXP[-TA*T] 

STORE FPU OPT T,TO 
STORE FPU INST R, , S / - / -  
STORE FPU INST -/P+T/- ;CALCULATE T + TO 
STORE FPU INST R,RFO,/-/RFO 
STORE FPU OP TA, 
STORE FPU INST -/(-P)*Q/- 
STORE FPU INST RFO , R, S/ - /RFO 

;CALCULATE -TA*(T + TO) 

 EVALUATE EXP(RFO) I 
STORE FPU OP A5,A4 ;EVALUATE EXP SERIES 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST - /T+P*Q/ - 
STORE FPU INST RFO,RFl,R/-/RFl 
STORE FPU OP A3, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RFl,R/-/RFl 
STORE FPU OP A2, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RFl,R/-/RFl 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P"Q/- 
STORE FPU INST RFO,RFl,R/-/RF1 
STORE FPU OP AO, 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RFl,l/-/RFl 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P$<Q/- 
STORE FPU INST RFO,RFl,l/-/RFl 
STORE FPU INST -/T+P*Q/- 
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JMPF ON, OFF ; I F  OFF, SKIP 
STORE FPU INST -/T+P*Q/- 

9 

STORE FPU INST l,-,RFO/-/RFO 
STORE FPU INST - /P-T/-  
STORE FPU INST - / - / F  
LOAD FPU RES Y,F ;OUTPUT l-EXP(X) 
JMP END 
NOP 
STORE FPU INST RFO,, / - / -  
STORE FPU INST - / P / -  
STORE FPU INST - / - / F  
LOAD FPU RES Y,F 

OFF : 

; OUTPUT EXP ( X) 
END: 
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FCNSW 

DESCRIPTION:  I m p l e m e n t s  a func t iona l  s w i t c h  w h e r e :  

Y = x1 I F  P < 0 ,  
Y = x2 I F  P = 0 ,  and 
Y = x3 I F  P > 0. 

EXECUTION TIME (WORST CASE):  600nS 
MEMORY WORDS REQUIRED: 18 
INPUTS:  P 
OUTPUTS: Y 
CODE : 

STORE FPU OPT P , -  ;COMPARE P TO 0 
STORE FPU I N S T  R ,  ,O/-/ - 
STORE F P U  I N S T  -/COMPARE P ,T/ -  
STORE F P U  I N S T  - / - / F L A G  
LOAD F P U  RES CHK,FLAG 
AND C H K l  , CHK, # 2 0 H  ;CHECK '= '  FLAG 
CPEQ 
JMPF CHKl ,NEXT 
OR Y,X2,00 
JMP END 
NOP 

CPEQ CHKl  , CHKl , # l O H  9 

JMPF C H K 1 , N E x T l  
OR Y ,X3,00 ;MAKE OUTPUT X 3  
J M P  END 
NOP 

CHKl , CHKl , # 2 0 H  

NEXT : AND CHKl,CHK,#lOH ;CHECK ' > '  FLAG 

NEXT1 : OR Y ,xl  ,oo ;ASSUME < 
END : 
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GAUSS t 

DESCRIPTION: Generates a normally distributed random variable with mean 
I 
I M and standard deviation S. 

EXECUTION TIME (WORST CASE): 9.8uS 
INSTRUCTIONS EXECUTED (WORST CASE): 153 
MEMORY WORDS REQUIRED: 21 
INPUTS: NONE 
OUTPUTS: Y 
PARAMETERS : 
M - MEAN 
S - STANDARD DEVIATION 
CODE : 

; 
; N(K) IS A RANDOM NUMBER BETWEEN 0 AND 1. 

Y = M + S"Z WHERE Z = SUMMATION (K=l TO 12) OF N(K) - 6. 

STORE FPU INST O , , / - / -  
STORE FPU INST -/P/- 
STORE FPU INST R,,S/-/RF1 ;INIT. ACCUM. REG. 
OR COUNT,ZER0,#012D ;INITIALIZE COUNT REG. 

AGAIN : LOAD N , RDNPTR ;READ NEW RANDOM "MBER 
ADD 
CPEQ COND,RDNPTR,MAXPTR ;SEE IF AT END 
JMPF COND, SKIP 
NOP 
OR RDNPTR,START,#OO ;RESET OUTPUT POINTER 

STORE FPU INST -/P-T/- 
STORE FFU INST RFO,,RFl/-/RFO ;STORE N-6 
STORE FPU INST -/P+T/- ;ACCUMULATE VALUES 
JMPFDEC COUNT,AGAIN ;IF NOT DONE 12 TERMS, 

STORE FPU INST R,,S/-/RF1 

;INITIALIZE RF1 TO 0 

RDNPTR, RDNPTR, HO 1 ; POINT TO NEW R . N . 

SKIP : STORE FPU OPT N,SIX ;COMPUTE N-6 

;DO ANOTHER. 

9 

;NOW COMPUTE Y = M + S*RF1 
STORE FPU OP S ,M ;STORE M E A N  AND S.D. 
STORE FPU INST -/P"Q+T/- 
STORE FPU INST -/P*Q+T/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ ANSWER 

;COMPUTE S*Z+M 



HARM 

DESCRIPTION: A sinusoid drive function can be created by this 
instruction which results in the fo l lowing:  

y = 0.0 t < tz, 
y = SIN[w*(t-tz) i- P I  

EXECUTION TIME (WORST CASE): 1.88uS 
MEMORY WORDS REQUIRED: 47 
INPUTS: NONE 
OUTPUTS: Y 
PARAMETERS : 
TZ - DELAY IN SECONDS 
W - FREQUENCY IN RAD/SEC 
P - PHASE SHIFT IN RADIANS 
T - CURRENT TIME 
CODE : 

STORE FPU OPT TZ,T ;COMPARE TIME TO DELAY 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/FLAG 
LOAD FPU RES CHK,FLAG-REGISTER 
AND CHK , CHK , 11 1 OH 
CPEQ CHK , CHK, f1lOH 
JMPT END 
AND Y , X , H O O  ;CLEAR OUTPUT 

STORE FPU OPT T,TZ 
STORE FPU INST R, , S /  - /  - 
STORE FPU INST -/P-T/- 
STORE FPU INST R,RFO,/-/RFO 
STORE FPU OP W, 
STORE FPU INST -/P-T/- 
STORE FPU INST RFO, ,R/-/RFO 
STORE FPU OP P, 
STORE FPU INST -/P+T/- 

STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1 
STORE FPU OP A5,A6 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1, RF2, R/ - /RF2 
STORE FPU OP A 4 ,  
STORE FPU INST -/T+Pf:Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1, RF2, R/ - /RF2 
STORE FPU OP A 3  
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1 ,RF2,R/ -/RF2 

;CHECK GREATER THAN FLAG 

;COMPUTE THE SINE FUNCTION 

;SINE ROUTINE, X IN RFO 



STORE FPU OP A2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RFZ,R/-/RF2 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,1/-/RF2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 

STORE FPU INST -/-/F 
LOAD FPU RES Y,F 

STORE FPU INST -/P*Q/- ;GCCUM * x 
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IABS 

DESCRIPTION: Returns absolute value of an integer. 

EXECUTION TIME (WORST CASE): 200nS 
MEMORY WORDS REQUIRED: 5 
INPUTS : J 
OUTPUTS: N 
CODE : 

STORE FPU OPT J, ;LET THE FPU COMPUTE 
STORE FPU INST R,,/-/- 
STORE FPU INST -/IABS(P)/- ;OF THE 2's COMP. INT. 
STORE FPU INST -/-/F 
LOAD FPU RES N,F 

;THE ABSOLUTE VALUE 
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IDIM 

DESCRIPTION: Returns integer positive difference when: 

N = J1 - 52 Jl>J2 
N = O  J2>J1. 

EXECUTION TIME (WORST CASE): 160nS 
MEMORY WORDS REQUIRED: 4 
INPUTS: J1, 52 
OUTPUTS: N 
CODE : 

SUBR DIFF,Jl,J2 
JMPT DIFF, SKIP 
AND 
OR 

N , X , #OO 
N , DIFF , #OO 

SKIP : 

;SUBTRACT 52 FROM J1 
;IF NEG, CLEAR AND JMP 
;CLEAR OUTPUT 
;LOAD OUTPUT 
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INT 

DESCRIPTION: Integerization of a real floating point argument. 

EXECUTION TIME (WORST CASE): 200nS 
MEMORY WORDS REQUIRED: 5 
INPUTS: X 
OUTPUTS: N 
CODE : 

STORE FPU OPT X, ;LET FPU CONVERT TO INT. 
STORE FPU INST , , R / - / -  
STORE FPU INST -/INT(T)/- 
STORE FPU INST -/-/F 
LOAD FPU RES N,F ;READ RESULT 
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INTEG 

DESCRIPTION: Performs an integration of a state variable using one of 
several integration routines. A fourth order Runge-Kutta method and a 
parallel predictor-corrector method will be shown. The parallel 
predictor-corrector method will be used to demonstrate improvements in 
execution speed resulting from parallel algorithms, and the Runge-Kutta 
method will show how a traditionally sequential technique can be 
improved with a parallel processing architecture (as well as providing 
starting values for the predictor-corrector method). The coefficients 
(Kl-K4) required in the Runge-Kutta integration method will be computed 
in parallel for all state variables causing a system with N equations to 
execute in approximately the same amount of time as a sequential system 
with one equation. 

The integration will be programmed to execute in real time, up to a 
maximum calculation interval. The routine will use the real-time clock 
values as the time variable and will update the state variables every 
h seconds. For example, if h = .01 the routine will calculate a new 
value of X every 10 milliseconds. 
I 1  11 
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RUNGE-KUTTA INTEGRATION METHOD: 

DESCRIPTION: For a program with N integrations, one integration will be 
allocated to a cluster of processing elements (PES). The cluster will 
be responsible for calculating the coefficients for its state variable 
and evaluating the derivative function as necessary. If the derivative 
function is sufficiently complex, the allocater may divide the function 
among one or more PES in the cluster to improve execution speed. 
general case for computing the integration is as follows: 

The 

Given : X' = F(t,x,y, ..., z ) ,  X(O)=C 
find: X(i+l) = X(i) + K where 

K = 1/6 * (K1 + 2K2 + 2K3 + K4), 
K1 = h*F( t( i) ,x( i) ,y( i), . . . , z(  i)), 
K2 = h*F( t( i)+.5h, x( i)+.5K1, y( i)+.5J1, . . . , z(  i)+.5M1), 
K3 = h*F( t( i)+.5h, x( i)+.5K2, y( i)+.5J2, . . . , z (  i)+.5M2), 
K4 = h*F(t(i)+h, x(i)+K3, y(i)+J3, ... , z(i)+M3). 

The coefficients Jn, ... ,Mn will be computed in parallel by the cluster 
assigned to that particular integration. This would normally be done in 
a sequential manner thus making the execution time proportional to the 
number of simultaneous equations being integrated in the system. 

EXECUTION TIME (WORST CASE): 3.28uS + 4*(derivative function evaluation 
time) 
MEMORY WORDS REQUIRED: 43 + 4*(derivative function expression) 
INPUTS: X, Y, ... , Z (STATE VARIABLES) 
OUTPUTS: X (INTEGRATED VARIABLE) 
CODE : 

;FPU REGISTER ASSIGNMENTS: 
;RFO - TEMP. WORKSPACE 
;RF5 - 
;RF6 - 
;RF7 - 
9 

HERE1 : 

; EVALU. 

9 

; STORE 

9 

CURRENT VALUE OF X (STATE VARIABLE) 
ACCUMULATION OF K 
H (STEP SIZE) 

JMPF OPER,HEREl ;WAIT FOR OPERANDS 
9 

TE THE DERIVATIVE FUNCTION 
MACRO RFO=FUNCT(T,X,Y,..,Z> 

STORE FPU INST -/P*Q/- ;DERIV $: H 
RESULT IN ACCUMULATION REG. AND RFO 

STORE FPU INST RF0,.5,/-/RFO,RF6 
STORE FPU INST -/P*Q/- ;DIVIDE K l / 2  
STORE FPU INST RF5,,RFO/-/RFO ;STORE K1/2 IN RFO 
STORE FPU INST -/P+T/- ;CALCU. X( i) + .5f:K1 
STORE FPU INST .5 ,RF7, R/ - / F  ; STORE RESULT 
LOAD FPU RES TEMP,F ;READ RESULT 

;SEND X(i)+.5Kl TO 1/0 PROCESSOR FOR TRANSMISSION TO OTHER PES IN 
; SYSTEM. 

STORE IOP ,TEMP 
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9 

9 

HERE2 : 

; EVALUATE 
9 

Y 

JMPF OPER, HERE2 ;WAIT FOR OPERANDS 

DERIVATIVE FUNCTION 
MACRO RFO=FUNCT(T, X+.5K1, Y+.5J1,. . . , Z+. 5M1) 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFOY2,RF6/-/RFO; K2 = DERIV*H IN RFO 

;COMPUTE K2 = DERIV.":H 

STORE FPU INST -/P*Q+T/- 
STORE FPU INST -/PkQ+T/- 
STORE FPU INST RF0,.5,/-/RF6 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFS,,RFO/-/RFO 
STORE FPU INST -/P+T/- 
STORE FPU INST -/-/F 
LOAD FPU RES TEMP,F 
STORE IOP ,TEMP 

; K2*2 + ACC 
;STORE NEW ACCUM VALUE 
;DIVIDE K2/2 
;STORE K2/2 
;CALCU. X ( i )  + .5+K2 
;STORE RESULT 
;READ RESULT 
;SEND X(i)+.5K2 TO 1/0 

;PROCESSOR FOR TRANSMISSION TO OTHER PES IN SYSTEM. 
Y 

HERE3 : JMPF OPER,HERE3 ;WAIT FOR OPERANDS 

;EVALUATE NEW DERIVATIVE VALUE 
9 

MACRO RFO=FUNCT(T, X+.5K2, Y+.5J2, ..., Z+.5M2) 
Y 

STORE FPU INST -/P*Q/- ;COMPUTE K3 = DERIV.$:H 
STORE FPU INST RF0,2,RF6/-/RFO; K3 = DERIV*H IN RFO 
STORE FPU INST -/P*Q+T/- ; K3*2 + ACC 
STORE FPU INST -/P*Q+T/ - 
STORE FPU INST RFS,,RFO/-/KF6 ;STORE NEW ACCUMULATOR 
STORE FPU INST -/P+T/- ;CALCU. X(i) + K3 
STORE FPU INST RF7,,R/-/F 
LOAD FPU RES TEMP,F ;READ RESULT 
STORE IOP , TEMP ;SEND X(i)+K3 TO 1/0 

;STORE RESULT 

;PROCESSOR FOR TRANSMISSION TO OTHER PES IN SYSTEM. 
9 

HERE4 : JMPF OPER , HERE4 ;WAIT FOR NEW OPERANDS 
Y 

9 

;EVALUATE DERIVATIVE FUNCTION 
MACRO RFO=FUNCT(T,X+K3,YtJ3, ..., Z+M3) 
STORE FPU INST -/P*Q/- ;K4 = DER1Vf:H 
STORE FPU INST RFO,,RF6/-/RFO ;ACCUMULATE K4 
STORE FPU INST -/P+T/- ; ACCUMULATE 
STORE FPU INST R,RF6,/-/RF6 ;K IS ALMOST COMPLETE! 
STORE FPU OP ( 1/61 ;DIVIDE K BY 6 
STORE FPU INST -/P*Q/- 
STORE FPU INST RF6,,RFS/-/RF6 ;K IS IN RF6 
STORE FPU INST -/P+T/- ;CALCU. X ( i )  + K 
STORE FPU INST -/-/RF5 ;STORE X( i+l ) 

LOAD FPU RES TEMP,F ;READ NEW STATE VARIABLE 
STORE IOP ,TEMP ;SEND X ( i + l )  TO 1/0 

; NEW STATE VARIABLE VALUE IS IN RF5 

;PROCESSOR FOR TRANSMISSION TO OTHER PES IN SYSTEM. 
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PARALLEL PREDICTOR-CORRECTOR METHOD: 

DESCRIPTION: 
for solving differential equations will be programmed using the 
following equations: 

A parallel form of the classic predictor-corrector method 

Xp(n+l) = xc(n-1) + 2*hkF(T(n), Xp(n>, . . ,zp(n)), and 
Xc(n) = Xc(n-1) + hk.5*(F(T(n), Xp(n), . ,z(n)) + 

F(T(n-l),Xc(n-l), . . . ,Zc(n-l))) 
where Xc is the corrected value and Xp is the predicted value. 

Using this form allows the prediction of the n+l value while correcting 
the n value. 
concurrently. 
for the predictor and one for the corrector. 
method, one integration will be allocated to a cluster of PES thus 
allowing complex functions to be evaluated with a high degree of intra- 
cluster processor communication with out degrading the overall system 
communication. 

Both the prediction and correction can be done 
Two PES will be employed in solving the equations, one 

As in the Runge-Kutta 

Notice that the term F(T(n),Xp(n), ..., Zp(n)) is present in both the 
predictor and the corrector equations. If the derivative is relatively 
simple, the corrector PE simply re-computes the derivative function; 
otherwise, the derivative function computed by the predictor PE is sent 
to the corrector PE for use in its equation. 
high efficiency since the corrector still must compute the derivative at 
n-1 using predicted values; therefore, the corrector couid compute the 
derivative at n-1 while the predictor computes the derivative at n using 
the predicted values making the only inefficiency present the 
communication delay time for the transfer of Fp(n). 

This method would allow 

PREDICTOR PROGRAM: 

EXECUTION TIME (WORST CASE): 960nS + function evaluation time 
MEMORY WORDS REQUIRED: 14 + derivative function 
INPUTS: X,Y, ..., Z (STATE VARIABLES) 
OUTPUTS: XPN+1 
PARAMETERS : 
XCN-1 - CORRECTED VALUE OF 
XPN - PREDICTED VALUE OF X 
XPN+l - PREDICTED VALUE OF 
CODE : 

X AT TIME N-1 
AT TIME N 
X AT TIME Nt1 

;FPU REGISTER ASSIGNMENT: 
;RFO - SCRATCH PAD 
;RF7 - H 

HERE1 : 

; EVALUATE 
9 

JMPF OPER,HEREl ;WAIT FOR OPERANDS 

THE DERIVATIVE AT N. 
MACRO RFO=FUNCT(T ,XPN , . . . , ZPN) 

, 
LOAD FPU RES TEMP,F 



9 

;VALUE TO 

9 

STORE IOP , TEMP 

STORE FPU INST RFO,RF7,/-/- 
STORE FPU INST -/P*Q/- 
STORE FPU INST RF0,2,/-/RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFO , ,R/ -/RFO 
STORE FPU OP XCN-1, 
NEW PREDICTED DERIVATIVE. 
STORE FPU INST -/P+T/- 
STORE FPU INST -/-/F 
LOAD FPU RES XPN+l ,F 
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;SEND Fp(n) TO CORRECTOR 

; DERIVnH 

;STORE RESULT IN RFO 
;[DERIV*H]*2 
;STORE RESULT IN RFO 
;ADD OLD CORRECTED 

¶ 

;READ NEW PREDICTED VALUE 

;SEND VALUE TO OTHER PES FOR USE IN THEIR CALCULATIONS. 
STORE IOP, XPN+l 

OR XPN ,XPN+l , #OO ;UPDATE Xp(n) VALUE 
9 

CORRECTOR PROGRAM: 

EXECUTION TIME (WORST CASE): 1.16uS + function evaluation time + 
communication delay. 
MEMORY WORDS REQUIRED: 16 + derivative function 
INPVTS: X,Y, ..., Z (STATE VARIABLES) 
OUTPUTS: XCN - CORRECTED VALUE OF X AT TIME N. 
PARAMETERS : 
XCN-1 - CORRECTED VALUE OF X AT TIME N-1 
XCN - CORRECTED VALUE OF X AT TIME N 
XPN - PREDICTED VALUE OF X AT TIME N 
CODE : 

;FPU REGISTER ASSIGNMENT: 
;RFO - SCRATCH PAD 
;RF7 - H (STEP INTERVAL) 
9 

HERE1 : 

; EVALUATE 
9 

9 

;WAIT FOR 
HERE2 : 
9 

JMPF OPER,HEREl ;WAIT FOR OPERANDS 

THE DERIVATIVE FUNCTION WITH CORRECTED VALUES AT N-1 
MACRO RFO=FUNCT(TN-l,XCN-l, ..., ZCN-1) 
Fp(n) FROM THE PREDICTOR PE 
JMPF FNPSTATUS,HERE2 

STORE FPU OPT FPN, 
STORE FPU INST RFO,RPN,/-/- 
STORE FPU INST -/P+T/- 
STORE FPU INST RF7,RFO,/-/RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFO,.S,/-/RFO 
STORE FPU INST -/Pf:Q/- 
STORE FPU INST RFO,,R/-/RFO 
STORE FPU OP XCN-1, 

;ADD TWO FUNCTIONS 

;STORE RESULT IN RFO 
; RFOAH 

;RF0*.5 
;PUT RESULT IN RFO 
;STORE OLD CORRECTED VAL 
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STORE FPU INST -/P+T/- ;ADD OLD X TO RFO 
STORE FPU INST -/-/F 
LOAD FPU RES XCN,F ;READ NEW X VALUE 

9 

;SEND TO OTHER PES FOR USE IN NEXT CALCULATION INTERVAL 
STORE IOP , XCN 

OR XCN-l,XCN,#OO ;UPDATE OLD X VALUE 
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ISIGN 

DESCRIPTION: 
Result is sign of 52 times absolute value of J1. 

Append a sign (ISIGN(Jl,J2)) when J1 and 52 are integers. 

EXECUTION TIME (WORST CASE) : 20011s 
MEMORY WORDS REQUIRED: 5 
INPUTS: Jl,J2 
OUTPUTS: N 
CODE : 

STORE FPU OPT Jl,J2 ;FPU PERFORMS THIS 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/ISIGN(T)*IABS(P)/- 
STORE FPU INST -/-/F 
LOAD FPU RES N,F ;READ RESULT 

;EXACT OPERATION. 
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LIMINT 

DESCRIPTION: Limit the integrator by holding its derivative at zero 
while the sign of the derivative tries to drive the integrater further 
into the limited range. 
changes to the proper direction. 

The derivative is released as soon as its sign 

EXECUTION TIME (WORST CASE) : 640nS 
MEMORY WORDS REQUIRED: 16 
INPUTS: Y - INTEGRATOR 
OUTPUTS: YD - DERIVATIVE 
PARAMETERS : 
IC - INITIAL CONDITION ON Y 
UL - UPPER LIMIT ON Y 
LL - LOWER LIMIT ON Y 
CODE : 

[ INSERT AT THE BEGINNING OF INTEGRATION ROUTINES 1 

STORE FPU OPT uL,Y ;COMPUTE UL - Y 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
LOAD FPU RES DIFF,F 
JMPF DIFF ,OK ;IF UL-Y POS, JUMP 
NO? 
AND YD ,x, !loo ; CLEAR DERIVATI'V'E 

STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST -/-/F 
LOAD FPU RES DIFF,F ;READ Y - LL 
JMPF DIFF , OK1 ;IF Y-LL POS, JMP 
NOP 
AND M , x , I10 0 ; CLEAR DERIVATIVE 

OK : STORE FPU OPT Y,LL 

OK1 : 
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LSW 

DESCRIPTION: 
as follows: 

The l o g i c a l  switch function, LSW(P,Jl,J2) is implemented 

i f  P is t r u e ,  then N = J1, 
i f  P is f a l s e ,  then N = 52. 

EXECUTION TIME (WORST CASE) : 120nS 
MEMORY WORDS REQUIRED: 3 
INPUTS: P 
OUTPUTS: N 
PARAMETERS: J1, 52 
CODE : 

JMPT P, END 
OR N, Jl , H O O  
OR N ,J2, #OO 

END: 

;IF P TRUE, N=J1 
;IF P FALSE, N=J2 



L 
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MAX0 

DESCRIPTION: Determine the  maximum argument where the  inputs are 
integers  and the  output is an integer value. 

EXECUTION TIME (WORST CASE): (7:':CNT + 15)*40nS 
MEMORY WORDS REQUIRED: 16 
INPUTS: J1, 52, 53, ... Jn 
OUTPUTS: N 
PARAMETERS : 
CNT = NUMBER OF OPERANDS - 1. 
IPA = POINTING TO BEGINNING OF STRING 
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS) 
CODE : 

OR 
AGAIN : CPLE 

JMPT 
MFSR 
OR 

JMPFDEC 
MTSR 

SKIP : ADD 

N, IPA, 0 
COND, IPA, N 
COND, SKIP 
COND, IPAREG 
N, IPA, 0 
COND , COND , !IO 1 
CNT, AGAIN 
IPAREG, COND 

STORE FPU INST RFO,,R/-/RFO 

;WAIT FOR RESULTS FROM OTHER ?E 
HERE : JMPF OPER,HERE 

NOP 

STORE FPU OP X,N 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP,Y 

9 

;COMPARE CURRENT VALUE 
;TO CURRENT MAX. 

;IF GREATER, REPLACE OLD. 
;INCREMENT IPA TO POINT 

;AT NEXT VALUE. 

;SEND RESULT TO NEXT PE 
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MAX1 

DESCRIPTION: Return the maximum argument where the inputs are floating 
point values and the output is an integer value. 

EXECUTION TIME (WORST CASE): (lO*CNT + 29)*40nS 
INPUTS: X 1 ,  X 2 ,  X3, ... Xn 
OUTPUTS: N 

I PARAMETERS: 
I CNT = NUMBER OF OPERANDS - 1 

1 MEMORY WORDS REQUIRED: 23 I 
I 

I IPA = POINTS TO START OF STRING 
(ASSUME ALL OPERANDS ARE IN THE GENERAL PURPOSE REGISTERS) 
CODE : 

I 

OR Y, IPA, 0 
STORE FPU OPT Y, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,,R/-/RFO 

9 

AGAIN : STORE FPU OP IPA 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST RFO,,R/-/RFO 
MFSR COND, IPAREG 
ADD 
JMPFDEC CNT, AGAIN 
MTSR IPAREG, COND 

cmi ,  zom , ::z 1 

, 
STORE FPU OPT Y, 

STORE FPU INST -/INT(T)/- 
STORE FPU INST RFO,,R/-/RFO 

. STORE FPU INST ,,R/-/- 

> 
;WAIT FOR RESULTS FROM OTHER PE 
HERE : JMPF OPER , HERE 

NOP 
i 

STORE FPU OP X 
STORE FPU INST -/MAX P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP,Y 

9 

;INITIALIZE FPU ACCUM. 

;LET FPU FIND MAXIMUM 

;STORE NEW MAXIMUM 

;INCREMENT IPA 

;CONVERT MAX TO INTEGER 

;SEND RESULT TO NEXT PE 
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MINO 

DESCRIPTION: Determine the minimum argument where the inputs are 
integers and the output is an integer value. 

EXECUTION TIME (WORST CASE): (7kCNT + 15)*40nS 
MEMORY WORDS REQUIRED: 16 
INPUTS: J1, 52, 53 ,  ... Jn 
OUTPUTS: N 
PARAMETERS : 
CNT = NUMBER OF OPERANDS - 1. 
IPA = POINTING TO BEGINNING OF STRING 
(ASSUME VARIABLES ARE IN GENERAL PURPOSE REGISTERS) 
CODE : 

OR N, IPA, 0 

JMPT COND, SKIP 
MFSR COND , IPAREG 
OR N, IPA, 0 

JMPFDEC CNT, AGAIN 
MTSR IPAREG,COND 

STORE FPU INST RFO,,R/-/RFO 

AGAIN : CPGE COND, IPA, N 

SKIP : ADD COND , COND , I10 1 

9 

9 

;WAIT FOR RESULTS FROM OTHER PE 
HERE : JMPF OPER,HERE 

NOP 

STORE FPU OP X,N 
STORE FPU INST -/MIN P,T/ - 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP ,Y 

9 

;COMPARE CURRENT MIN TO 
;CURRENT VALUE 

;INCREMENT IPA TO POINT 

;TO NEXT VALUE 

;SEND RESULT TO NEXT PE 



MIN 1 

DESCRIPTION: Return t'he minimum argument where the inputs are floating 
point values and the output is an integer value. 

EXECUTION TIME (WORST CASE): (10*CNT + 29)*40nS 
MEMORY WORDS REQUIRED: 23 
INPUTS: X1, X2, X3, ... Xn 
OUTPUTS: N 
PARAMETERS : 
CNT = NUMBER OF OPERANDS - 1 
IPA = POINTS TO START OF STRING 
(ASSUME ALL OPERANDS ARE IN THE GENERAL PUR 
CODE : 

E E STERS ) 

OR Y, IPA, 0 ;INITIALIZE FPU ACCUM. 
STORE FPU OPT Y, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,,R/-/RFO 

9 

AGAIN : STORE FPU OP IPA ;LET FPU FIND MINIMUM 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST RFO, ,R/-/RFO 
MFSR COND , IPAREG 
W Y  A nn 
JMPFDEC CNT, AGAIN 
MTSR IPAREG, COND ;POINT IPA TO NEXT VALUE 

STORE FPU OPT Y, ;CONVERT MIN TO INTEGER. 
STORE FPU INST , ,R/ - /  - 
STORE FPU INST -/INT(T)/- 
STORE FPU INST RFO,,R/-/RFO 

;STORE NEW MINIMUM 

corn 2 COND , /IO 1 

9 

;WAIT FOR RESULTS FROM OTHER PE 
HERE : JMPF OPER, HERE 

NOP 
STORE FPU OP X 
STORE FPU INST -/MIN P,T/- 
STORE FPU INST -/-/F 
LOAD FPU INST Y,F 
STORE IOP ,Y ;SEND RESULT TO NEXT PE 
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I MOD 



112 

MODINT I 

DESCRIPTION: 
mode. 

Provides an integration function that has a HOLD and RESET 

INPUTS: YD - DERIVATIVE 
OUTPUTS: Y - INTEGRATOR 
PARAMETERS : 
IC - INITIAL CONDITION ON Y 
L1, L2 - LOGICAL VARIABLES DENOTING THE MODE AS SHOWN BELOW: 

CODE : 

XOR TEST,Ll,L2 
JMPT TEST,OPERATE 
NOP 

JMPT L1 ,RESET 
NOP 

9 

9 

;MUST BE HOLD, SO SKIP INTEGRATION 
JMP END 
NOP 

9 

RESET : OR Y, IC, ijoo 
JMP END 
NOP 

Y 

OPERATE: MACRO INTEG(Y, IC) 

END: 
9 

;IF L1=L2, OPERATE 

;IF L1 TRUE, RESET 

;RESET FUNCTION TO I.C. 

;INSERT INTEGRATION 
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RAMP 

DESCRIPTION: 
given by the function: 

Generates a unity ramp function starting after time TZ and 

Y = O  T<TZ, 
Y = T-TZ T>TZ. 

EXECUTION TIME (WORST CASE): 400nS 
MEMORY WORDS REQUIRED: 10 
INPUTS: NONE 
OUTPUTS: Y 
CODE : 

STORE FPU OPT T,TZ 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/F 
LOAD FPU RES COMP,FLAG ;READ FPU FLAGS 
AND COMP,COMP,08H ;LOOK AT < FLAG 
CPEQ COMP,COMP,08H 
JMPT COMP , END ;IF T<TZ QUIT + CLR 
I-.- A h m  v,v,nn 

;NOW, MAKE Y = T-TZ 

END: 
LOAD FPU RES Y,F ;READ DIFFERENCE 
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RSW 

DESCRIPTION: The real switch function, LSW(P,Xl,X2) is implemented as 
follows : 

if P is true, then Y = X 1 ,  
if P is false, then Y = X 2 .  

EXECUTION TIME (WORST CASE): 120nS 
MEMORY WORDS REQUIRED: 3 
INPUTS: P 
OUTPUTS: Y 
PARAMETERS: X 1 ,  X 2  
CODE : 

JMPT P, END 
OR Y ,x1,1/00 
OR Y,X2,1 /00  

END: 

;IF P TRUE, Y=X1 
;IF P FALSE, Y=X2 
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DESCRIPTION: 
complex variable in polar form. 

Converts a complex variable in rectangular from to a 

EXECUTION TIME (WORST CASE): 14.12uS 
MEMORY WORDS REQUIRED: 164 
INPUTS: X,Y 
OUTPUTS: MAG, ANG 

STORE FPU OPT X, 
STORE FPU INST R,R,/-/- 
STORE FPU INST -/P*Q/- 
STORE FPU INST R,R,/-/RFO 
STORE FPU OP Y 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFO,,RFl/-/RF1 ;PUT Y SQUARED IN RF1 
STORE FPU INST -/P+T/- 
STORE FPU INST -/-/RF2 ;X*X + Y*Y IN RF2 
MACRO P=syKl (KJ! L / 

LOAD FPU RES MAG,F ;READ MAGNITUDE VALUE 

MACRO RFO=FDIV(Y,X) 

;PUT X SQUARED IN RFO 

- - - - / m n q \  

MACRO F=ATAN(RFO) 

LOAD FPU RES ANG,F ;READ ANGLE VALUE 
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1 SIGN 

DESCRIPTION: 
absolute value of X1. 

Append a sign where the result is the sign of X2 times the 

EXECUTION TIME (WORST CASE): 200nS 
MEMORY WORDS REQUIRED: 5 
INPUTS: Xl,X2 
OUTPUTS: Y 
CODE : 

STORE FPU OPT Xl,X2 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/SIGN(T)*ABS(P)/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ THE ANSWER 

;THE FPU PERFORMS THIS OPER. 
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DESCRIPTION: 
radians. Result will be between -1.0 and 1.0. 

Returns the sine of a real argument which must be in 

EXECUTION TIME (WORST CASE) : 1 28uS 
MEMORY WORDS REQUIRED: 32 
INPUTS: X 
OUTPUTS: Y 
CODE : 

;IMPLEMENT THE FOLLOWING SERIES: 
;SIN(X)=X(l+Y(Al+Y(A2+Y(A3+Y(A4+Y(A5+Y(A6))))))), WHERE Y = Xf:X. 
9 

STORE FPU OPT X, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1 
STORE FPU OP A5,A6 
STORE FPU INST -/T+P"Qj- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2;ACCUMULATE IN RF2 
STORE FPU OP A4, 
STORE FPU INST -/TtP*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RF1, RF2, R/ - /RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A 1  
STORE FPU INST -/T+PfcQ/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,1/-/RF2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/Pf:Q/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ ANSWER 

;ACCUM f: X 
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SQRT 

DESCRIPTION: 
This routine is represented by: 

Computes the square root of X with a recursive routine. 

X(I+l) = 0.5*[X(I) + B/X(I)], where X is an approximation of B's square 
root. 

EXECUTION TIME (WORST CASE): 9.811s 
MEMORY WORDS REQUIRED: 31 
INPUTS: B 
OUTPUTS: Y 
PARAMETERS : 
COUNT - NUMBER OF DESIRED ITERATIONS 
CODE : 

;GET SEED FOR 1st ITERATION 
STORE TABLE, B ; PLACE BE 01 HARDWARE LOOK- 
LOAD X , TABLE ;RETRIEVE SEED VALUE 

9 
7- - - rnmm T'T"PDhTTnN ;COMPUL'L P L ~ ~ L  L L U ~ L L - - - .  

STORE FPU OPT X,B ;LOAD FPU 
STORE FPU INST R,,/-/- 
STORE FPU INST S,,/P/- 
STORE FPU INST -/P/RFO 
STORE FPU INST -/-/RF1 

;STORE X IN RFO, B IN RF1 

9 

AGAIN : MACRO RF2=RECIP(X) ;COMPUTE RECIPROCAL OF X 
9 

STORE FPU INST RF2,RFl,RFO/-/- 
STORE FPU INST -/P*Q+T/- 
STORE FPU INST -/P*Q+T/- 
STORE FPU INST RF0,0.5,/-/RFO ;STORE IN RFO 
STORE FPU INST -/P*Q/- 
JMPFDEC COUNT,AGAIN 
STORE FPU INST -/-/RFO ;STORE NEW X IN RFO 

;IF NOT ALL REQUIRED ITERATIONS HAVE BEEN DONE, DO ANOTHER. 
;APPROXIMATELY 7 ;ITERATIONS WILL BE REQUIRED FOR SINGLE 
;PRECISION VALUES. 

;CALCULATE [X + B/X] 
; CALCULATE 0.5* [ X+B/X 1 

9 

JP T .B E 
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I STEP 

DESCRIPTION: The STEP function outputs a zero if t < tz, and outputs an 
one if t > tz. 

EXECUTION TIME (WORST CASE): 400nS 
MEMORY WORDS REQUIRED: 10 
INPUTS: NONE 
OUTPUTS: Y 
PARAMETERS: TZ - STARTING TIME 
CODE : 

STORE FPU OPT T,TZ 
STORE FPU INST R,,S/-/- 
STORE FPU INST -/COMPARE P,T/- 
STORE FPU INST -/-/F 
LOAD FPU RES COMP,FLAG ;READ FPU FLAGS 
AND COMP,COMP,08H ;LOOK AT < FLAG 
CPEQ COMP,COMP,08H 
JMPF COMP , END ;IF T>TZ TURN ON 
OR Y , ONE, I100 ;TURN OUTPUT ON 
AND Y,Y,OO ;MAKE OUTPUT OFF 

END: 
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TAN 

DESCRIPTION: Returns the tangent of an angle represented i n  radians. 

EXECUTION TIME (WORST CASE): 1 . 2 8 ~ ~  
MEMORY WORDS REQUIRED: 32 
INPUTS: X 
OUTPUTS: Y 
CODE : 

;IMPLEMENT THE FOLLOWING SERIES: 
; TAN(X)=X( 1+Y (Al+Y (A2+Y (A3+Y( A4+Y (A5+Y(A6)))) ) ) ) , WHERE Y = X*X. 
9 

STORE FPU OPT X, 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFO,RFO,/-/RFO ;X IN RFO 
STORE FPU INST -/P*Q/- 
STORE FPU INST RFl,S,R/-/RF1 ;X SQUARED IN RF1 
STORE FPU OP A5,A6 
--nn- n icv  - / r + p n ~ j -  SlVlU!, c r u  I A V U I  , -  
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2;ACCULATE IN RF2 
STORE FPU OP A 4 ,  
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A3 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,R/-/RF2 
STORE FPU OP A1 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFl,RF2,1/-/RF2 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST -/T+P*Q/- 
STORE FPU INST RFO,RF2,/-/RF2 
STORE FPU INST -/PAQ/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F ;READ ANSWER 

;ACCUM :‘c X 
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UNIF 

DESCRIPTION: 
is a random var iab le  d i s t r ibuted  between L and U. 

Used to generate a uniform random number sequence where Y , 

EXECUTION TIME (WORST CASE): 1.16uS 
MEMORY WORDS REQUIRED: 17 
INPUTS: NONE 
OUTPUTS: Y 

I PARAMETERS : 
L - LOWER LIMIT 

I U - UPPER LIMIT 
I CODE : 

; Y = L + (U-L)JcN WHERE N IS A RANDOM "MBER FROM 0 TO 1. 
I 

LOAD N , RDNPTR 
ADD 

3iPF con!, SKIP 
NOP 
OR RDNPTR, START, 1\00 

STORE FPU INST R,,S/-/- 
STORE FPU INST -/P-T/- 
STORE FPU INST R,RFO,/-/RFO 
STORE FPU OP N 
STORE FPU INST -/P*Q/- 
STORE FPU INST R,,RFO/-/RFO 
STORE FPU OP L, 
STORE FPU INST -/P+T/- 
STORE FPU INST -/-/F 
LOAD FPU RES Y,F 

1 

, RDNPTR , RDNPTR , HO 1 
I 
I CPEQ COND,RDNPTR,MAXPTR 

SKIP : STORE FPU OPT U,L 

;READ NEW RANDOM NUMBER 
;POINT TO NEW R.N. 
;SEE IF AT END 

;RESET OUTPUT POINTER 
;COMPUTE U-L 

;STORE U-L IN RFO 
;STORE RANDOM NUMBER 
;COMPUTE (U-L)fCN 

;COMPUTE L + (U-L)*N 
;READ RESULT 
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ZHOLD 

DESCRIPTION: 
manner : 

Implements a zero order hold function in the following 

y = x if p is true, 
y = hold if p is false. 

EXECUTION TIME (WORST CASE): 120nS 
MEMORY WORDS REQUIRED: 3 
INPUTS: X,P 
OUTPUTS: Y 
CODE : 

JMPF p , m  
NOP 
OR Y ,x, 00 

END: 

;IF P FALSE, QUIT 

; M A K E Y = X  
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FDIV (MACRO ROUTINE) 

DESCRIPTION: Performs a single precision floating point division 
routine for 32 bit operations using a Newton-Raphson method which 
computes the reciprocal of the divisor and then multiplies it times the 
dividend to determine the quotient. 
the reciprocal of a value as well as performing floating point division. 

This routine can be used to find 

EXECUTION TIME (WORST CASE): (7*ITERATIONS + 10)*40nS 
EX: 1.24uS with 3 iterations 

INPUTS: DIVISOR, DIVIDEND 
OUTPUTS : QUOTIENT( RF3), RECIPROCAL(RF0) 
CODE : 

I MEMORY WORDS REQUIRED: 17 

STORE FPU OPT DIVISOR 
STORE FPU INST R,,/-/- 
STORE FPU INST -/P/- 
STORE FPU INST RFl,,/-/RF1 
STORE FPU INST -/RECIP-SEED/- 
STORE FPU INST RFO,RF1,2/-/RFO 

;PUT B IN RF1 

;SEED IN RFO 
;READY FOR FIRST ITEWI'IUN .---*- nnn Pun ~ ~ ~ T D R n r A T  i u , U A A  ..- d--L DIVISION 
;EVALUATE Xi+l = Xik(2-b"Xi) 

AGAIN: STORE FPU INST -/T-P*Q/- 
STORE FPU INST -IT-P*Q/- 

STORE FPU INST RFO,RF2,/-/- 
STORE FPU INST -/PnQ/- 
JMPFDEC COUNT,AGAIN ;DO REQUIRED ITERATIONS, 3 

9 

STORE FPU INST -/-/RF2 ; a 2  = 2-B"X(i) 

' .  
STORE FPU INST RFO,RF1,2/-/RFO 

STORE FPU INST R,RFO,/-/- 
STORE FPU OP DIVIDEND ;MULTIPLY DIVIDEND BY 

STORE FPU INST -/PnQ/ - 
STORE FPU INST -/-/RF3 ;QUOTIENT IN RF3 AND F 

;I/DIVISOR 
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IDIV (MACRO ROUTINE) 

DESCRIPTION: 
following parameters: 

Performs a signed 64 by 32 bit INTEGER division with the 

EXECUTION TIME (WORST CASE): 2.211s 
MEMORY WORDS REQUIRED: 55 
INPUTS : 
DIVMSW - MSW OF DIVIDEND, 
DIVLSW - LSW OF DIVIDEND, 
DIVISOR - 32 BIT DIVISOR 
OUTPUTS : 
QUOTIENT - 32 BIT QUOTIENT, 
N - 32 BIT REMAINDER 
9 

SKIP1 : 

SKIP2 : 

ASNE 
JMPF 
CONST 
CPEQ 
SUBR 
SUBRC 
JMPF 
NOP 
CPEQ 
SUBR 
MTSR 
DIVO 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
DIV 
D IV 

DIVZERO,DIVISOR,OO 
DIVMSW,SKIPl 
FLAGIT,0000 
FLAGIT,FLAGIT,OO 
DIVLSW,DIVLSW,OO 
DIVMSW,DIVMSW,OO 
DIVISOR,SKIP2 

FLAGIT,FLAGIT,OO 
DIVISOR,DIVISOR, 
0, DITJLSW 
N , DIVMSW 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 

;CHK DIVIDE BY ZERO 
;JMP IF POSITIVE 
;SET FLAG 0 FOR POS. 
;MAKE TRUE FOR NEG. 
;NEGATE L.0.WORD 
;NEGATE H.O.WORD 
;,?P IF DIVISOR POS . 
;TOGGLE FLAG 
;NEGATE DIVISOR 
;SET Q TO DIVIDEND LOW 
;MAKE SHIFT AREA FOR DIV. 
;PERFORM 32 STROKE DIVISION. 



, 

SKIP3 : 

POS : 

DIV 
DIV 
DIV 
DIV 

DIVL 
DIVREM 
MFSR 
CPLT 
JMPF 
CPEQ 
CPEQ 
CPNEQ 
JMPF 
ASEQ 
SUBR 
SUBR 

N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 
N,N,DIVISOR 

N,N,DIVISOR ;LAST STEP OF DIVIDE 
N,N,DIVISOR ;REMAINDER INTO N 
QUOTIENT, Q ; LOAD QUOTIENT 
OVRFLW, QUOTIENT, 00 ; IF NEG, SET FLAG 
OVRFLW,SKIP3 
SETMSB,SETMSB,SETMSB;SETMSB=8OOOOOOOH 
OVRFLW,SETMSB,QUOTIENT 
OVRFLW,OVRFLW,FLAGIT 
POS , FLAGIT ;NO CORRECTION, JMP 
DIVOVRFW,OVRFLW,OO ;IF SET OVERFLOW OCCURRED 
QUOTIENT,QUOTIENT,OO;NEGATE QUOTIENT 
N,N,OO ;NEGATE REMAINDER 
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